README.md 16.2 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
# Benchmarking vLLM

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. It’s a living document, updated as new features and datasets
become available.

**Dataset Overview**

<table style="width:100%; border-collapse: collapse;">
  <thead>
    <tr>
      <th style="width:15%; text-align: left;">Dataset</th>
      <th style="width:10%; text-align: center;">Online</th>
      <th style="width:10%; text-align: center;">Offline</th>
      <th style="width:65%; text-align: left;">Data Path</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><strong>ShareGPT</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
    </tr>
    <tr>
      <td><strong>BurstGPT</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
    </tr>
    <tr>
      <td><strong>Sonnet</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td>Local file: <code>benchmarks/sonnet.txt</code></td>
    </tr>
    <tr>
      <td><strong>Random</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>synthetic</code></td>
    </tr>
    <tr>
      <td><strong>HuggingFace-VisionArena</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>lmarena-ai/VisionArena-Chat</code></td>
    </tr>
    <tr>
      <td><strong>HuggingFace-InstructCoder</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>likaixin/InstructCoder</code></td>
    </tr>
      <tr>
      <td><strong>HuggingFace-AIMO</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
    </tr>
    <tr>
      <td><strong>HuggingFace-Other</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
    </tr>
    <tr>
      <td><strong>Custom</strong></td>
      <td style="text-align: center;"></td>
      <td style="text-align: center;"></td>
      <td>Local file: <code>data.jsonl</code></td>
    </tr>
  </tbody>
</table>

✅: supported

🟡: Partial support

🚧: to be supported

**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`

---
<details>
<summary><b>🚀 Example - Online Benchmark</b></summary>

<br/>

First start serving your model

```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```

Then run the benchmarking script

```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_serving.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --endpoint /v1/completions \
  --dataset-name sharegpt \
  --dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --num-prompts 10
```

If successful, you will see the following output

```
============ Serving Benchmark Result ============
Successful requests:                     10        
Benchmark duration (s):                  5.78      
Total input tokens:                      1369      
Total generated tokens:                  2212      
Request throughput (req/s):              1.73      
Output token throughput (tok/s):         382.89    
Total Token throughput (tok/s):          619.85    
---------------Time to First Token----------------
Mean TTFT (ms):                          71.54     
Median TTFT (ms):                        73.88     
P99 TTFT (ms):                           79.49     
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          7.91      
Median TPOT (ms):                        7.96      
P99 TPOT (ms):                           8.03      
---------------Inter-token Latency----------------
Mean ITL (ms):                           7.74      
Median ITL (ms):                         7.70      
P99 ITL (ms):                            8.39      
==================================================
```

**Custom Dataset**

If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl

```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
``` 

```bash
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
```

```bash
# run benchmarking script
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
  --backend vllm \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --endpoint /v1/completions \
  --dataset-name custom \
  --dataset-path <path-to-your-data-jsonl> \
  --custom-skip-chat-template \
  --num-prompts 80 \
  --max-concurrency 1 \
  --temperature=0.3 \
  --top-p=0.75 \
  --result-dir "./log/"
```

You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.

**VisionArena Benchmark for Vision Language Models**

```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```

```bash
python3 vllm/benchmarks/benchmark_serving.py \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path lmarena-ai/VisionArena-Chat \
  --hf-split train \
  --num-prompts 1000
```

**InstructCoder Benchmark with Speculative Decoding**

``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
    --speculative-config $'{"method": "ngram",
    "num_speculative_tokens": 5, "prompt_lookup_max": 5,
    "prompt_lookup_min": 2}'
```

``` bash
python3 benchmarks/benchmark_serving.py \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --dataset-name hf \
    --dataset-path likaixin/InstructCoder \
    --num-prompts 2048
```

**Other HuggingFaceDataset Examples**
zhuwenwen's avatar
zhuwenwen committed
205
206

```bash
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```

**`lmms-lab/LLaVA-OneVision-Data`**

```bash
python3 vllm/benchmarks/benchmark_serving.py \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path lmms-lab/LLaVA-OneVision-Data \
  --hf-split train \
  --hf-subset "chart2text(cauldron)" \
  --num-prompts 10
```

**`Aeala/ShareGPT_Vicuna_unfiltered`**

```bash
python3 vllm/benchmarks/benchmark_serving.py \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
  --hf-split train \
  --num-prompts 10
```

**`AI-MO/aimo-validation-aime`**

``` bash
python3 vllm/benchmarks/benchmark_serving.py \
    --model Qwen/QwQ-32B \
    --dataset-name hf \
    --dataset-path AI-MO/aimo-validation-aime \
    --num-prompts 10 \
    --seed 42
```

**`philschmid/mt-bench`**

``` bash
python3 vllm/benchmarks/benchmark_serving.py \
    --model Qwen/QwQ-32B \
    --dataset-name hf \
    --dataset-path philschmid/mt-bench \
    --num-prompts 80
```

**Running With Sampling Parameters**

When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:

```bash
python3 vllm/benchmarks/benchmark_serving.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --endpoint /v1/completions \
  --dataset-name sharegpt \
  --dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --top-k 10 \
  --top-p 0.9 \
  --temperature 0.5 \
  --num-prompts 10
```

**Running With Ramp-Up Request Rate**

The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.

Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.

The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.

</details>

<details>
<summary><b>📈 Example - Offline Throughput Benchmark</b></summary>

<br/>

```bash
python3 vllm/benchmarks/benchmark_throughput.py \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset-name sonnet \
  --dataset-path vllm/benchmarks/sonnet.txt \
  --num-prompts 10
```

If successful, you will see the following output

```
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens:  5014
Total num output tokens:  1500
```

**VisionArena Benchmark for Vision Language Models**

``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path lmarena-ai/VisionArena-Chat \
  --num-prompts 1000 \
  --hf-split train
```

The `num prompt tokens` now includes image token counts

```
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens:  14527
Total num output tokens:  1280
```

**InstructCoder Benchmark with Speculative Decoding**

``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
python3 vllm/benchmarks/benchmark_throughput.py \
    --dataset-name=hf \
    --dataset-path=likaixin/InstructCoder \
    --model=meta-llama/Meta-Llama-3-8B-Instruct \
    --input-len=1000 \
    --output-len=100 \
    --num-prompts=2048 \
    --async-engine \
    --speculative-config $'{"method": "ngram",
    "num_speculative_tokens": 5, "prompt_lookup_max": 5,
    "prompt_lookup_min": 2}'
zhuwenwen's avatar
zhuwenwen committed
350
```
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

```
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens:  261136
Total num output tokens:  204800
```

**Other HuggingFaceDataset Examples**

**`lmms-lab/LLaVA-OneVision-Data`**

```bash
python3 vllm/benchmarks/benchmark_throughput.py \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path lmms-lab/LLaVA-OneVision-Data \
  --hf-split train \
  --hf-subset "chart2text(cauldron)" \
  --num-prompts 10
```

**`Aeala/ShareGPT_Vicuna_unfiltered`**

```bash
python3 vllm/benchmarks/benchmark_throughput.py \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
  --hf-split train \
  --num-prompts 10
```

**`AI-MO/aimo-validation-aime`**

```bash
python3 benchmarks/benchmark_throughput.py \
  --model Qwen/QwQ-32B \
  --backend vllm \
  --dataset-name hf \
  --dataset-path AI-MO/aimo-validation-aime \
  --hf-split train \
  --num-prompts 10
```

**Benchmark with LoRA Adapters**

``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_throughput.py \
  --model meta-llama/Llama-2-7b-hf \
  --backend vllm \
  --dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --dataset_name sharegpt \
  --num-prompts 10 \
  --max-loras 2 \
  --max-lora-rank 8 \
  --enable-lora \
  --lora-path yard1/llama-2-7b-sql-lora-test
  ```

</details>

<details>
<summary><b>🛠️ Example - Structured Output Benchmark</b></summary>

<br/>

Benchmark the performance of structured output generation (JSON, grammar, regex).

**Server Setup**

```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```

**JSON Schema Benchmark**

```bash
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset json \
  --structured-output-ratio 1.0 \
  --request-rate 10 \
  --num-prompts 1000
```

**Grammar-based Generation Benchmark**

```bash
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset grammar \
  --structure-type grammar \
  --request-rate 10 \
  --num-prompts 1000
```

**Regex-based Generation Benchmark**

```bash
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset regex \
  --request-rate 10 \
  --num-prompts 1000
```

**Choice-based Generation Benchmark**

```bash
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset choice \
  --request-rate 10 \
  --num-prompts 1000
```

**XGrammar Benchmark Dataset**

```bash
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset xgrammar_bench \
  --request-rate 10 \
  --num-prompts 1000
```

</details>

<details>
<summary><b>📚 Example - Long Document QA Benchmark</b></summary>

<br/>

Benchmark the performance of long document question-answering with prefix caching.

**Basic Long Document QA Test**

```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 16 \
  --document-length 2000 \
  --output-len 50 \
  --repeat-count 5
```

**Different Repeat Modes**

```bash
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode random

# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode tile

# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode interleave
```

</details>

<details>
<summary><b>🗂️ Example - Prefix Caching Benchmark</b></summary>

<br/>

Benchmark the efficiency of automatic prefix caching.

**Fixed Prompt with Prefix Caching**

```bash
python3 benchmarks/benchmark_prefix_caching.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-prompts 1 \
  --repeat-count 100 \
  --input-length-range 128:256
```

**ShareGPT Dataset with Prefix Caching**

```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

python3 benchmarks/benchmark_prefix_caching.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
  --enable-prefix-caching \
  --num-prompts 20 \
  --repeat-count 5 \
  --input-length-range 128:256
```

</details>

<details>
<summary><b>⚡ Example - Request Prioritization Benchmark</b></summary>

<br/>

Benchmark the performance of request prioritization in vLLM.

**Basic Prioritization Test**

```bash
python3 benchmarks/benchmark_prioritization.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --input-len 128 \
  --output-len 64 \
  --num-prompts 100 \
  --scheduling-policy priority
```

**Multiple Sequences per Prompt**

```bash
python3 benchmarks/benchmark_prioritization.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --input-len 128 \
  --output-len 64 \
  --num-prompts 100 \
  --scheduling-policy priority \
  --n 2
```

</details>