chatglm_export.py 1.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import platform
import signal
import sys
import struct
import numpy as np
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
model = model.eval()

if __name__ == "__main__":
    exportPath = sys.argv[1] if (sys.argv[1] is not None) else "chatglm-6b.bin";
    dict = model.state_dict();
    fo = open(exportPath, "wb");

    # 0. version id
    fo.write(struct.pack('i', 0));

    # 1. vocab
    vocab = tokenizer.get_vocab();
    fo.write(struct.pack('i', len(vocab)));
    for v in vocab.keys():
        s = v.encode();
        fo.write(struct.pack('i', len(s)));
        for c in s:
            fo.write(struct.pack('i', c));
        fo.write(struct.pack('i', vocab[v]));
    # 2. weight
    fo.write(struct.pack('i', len(dict)));
    for key in dict:
        cur = dict[key].numpy().astype(np.float32);
        #cur = dict[key].numpy();

        fo.write(struct.pack('i', len(key)));
        fo.write(key.encode());
        fo.write(struct.pack('i', len(cur.shape)));
        for i in cur.shape:
            fo.write(struct.pack('i', i));
        fo.write(struct.pack('i', 0));
        fo.write(cur.data);

    fo.close();