hf_model.py 7.19 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from fastllm_pytools import llm;
import torch;
import ctypes;
import numpy as np;

fastllm_data_type_dict = {
    "int4": 8,
    "int8": 3,
    "float16": 7
}
fastllm_weight_type_dict = {
    "linear": 1,
    "embedding": 2,
    "QuantizedLinear": 111
}

def create(model,
           tokenizer = None,
           pre_prompt = None,
           user_role = None,
           bot_role = None,
           history_sep = None,
           dtype = "float16"):
    if (dtype not in fastllm_data_type_dict):
        print("dtype should in ", list(fastllm_data_type_dict.keys()));
        exit(0);

    # 0.1 model info
    # if model.config.model_type == "chatglm" and model.config.transformers_version == "4.30.2":
    #    model.config.model_type = "chatglm3"
    #    print("model.config.model_type: chatglm3!")
    modelInfo = model.config.__dict__
    if model.generation_config is not None:
        modelInfo.update(model.generation_config.__dict__)
    if (pre_prompt):
        modelInfo["pre_prompt"] = pre_prompt;
    if (user_role):
        modelInfo["user_role"] = user_role;
    if (bot_role):
        modelInfo["bot_role"] = bot_role;
    if (history_sep):
        modelInfo["history_sep"] = history_sep;
    if (modelInfo["model_type"] == "baichuan" and hasattr(model, "model") and hasattr(model.model, "get_alibi_mask")):
        # Baichuan 2代
        modelInfo["use_alibi"] = "1";
        modelInfo["pre_prompt"] = "";
        modelInfo["user_role"] = ("<FLM_FIX_TOKEN_" + str(model.generation_config.user_token_id) + "> ") if hasattr(model.generation_config, "user_token_id") else "";
        modelInfo["bot_role"] = ("<FLM_FIX_TOKEN_" + str(model.generation_config.assistant_token_id) + ">") if hasattr(model.generation_config, "assistant_token_id") else "";
        modelInfo["history_sep"] = "";
    if (modelInfo["model_type"] == "qwen"):
        if modelInfo["chat_format"] == "chatml":
            modelInfo["im_end_id"] = tokenizer.im_end_id
            modelInfo["im_start_id"] = tokenizer.im_start_id
    if (modelInfo["model_type"] == "chatglm" and hasattr(tokenizer, "build_chat_input")):
        # chatglm3
        modelInfo["pre_prompt"] = "";
        modelInfo["user_role"] = ("<FLM_FIX_TOKEN_" + str(tokenizer.get_command("<|user|>")) + ">\n");
        modelInfo["bot_role"] = ("<FLM_FIX_TOKEN_" + str(tokenizer.get_command("<|assistant|>")) + ">");
        modelInfo["history_sep"] = "";


    weight_type_dict = {};
    module_dict = {};
    weight_bits = {};
    for key, m in model.named_modules():
        if (str(type(m)).find("QuantizedLinear") != -1):
            weight_type_dict[key + ".weight"] = "QuantizedLinear";
            weight_bits[key + ".weight"] = m.weight_bit_width;
        if (isinstance(m, torch.nn.Linear)):
            weight_type_dict[key + ".weight"] = "linear";
            module_dict[key + ".weight"] = m;
        if (isinstance(m, torch.nn.Embedding)):
            weight_type_dict[key] = "embedding";

    peft_config = {}
    active_adapter = ""
    if hasattr(model, "peft_config"):
        peft_config = model.peft_config
    if hasattr(model, "active_adapter") and isinstance(model.active_adapter, str):
        # in transformers >= 4.33.0, active_adapter is a funtion in model, ignore it now
        active_adapter = model.active_adapter

    model = model.cpu();
    dict = model.state_dict();
    model_type = model.config.__dict__["model_type"];
    model = llm.fastllm_lib.create_empty_llm_model(model_type.encode());
    for it in modelInfo.keys():
        llm.fastllm_lib.add_dict_llm_model(model, str(it).encode(), str(modelInfo[it]).encode());

    for adapter_name in peft_config.keys():
        adapter_dict = peft_config[adapter_name].__dict__
        for it in adapter_dict.keys():
            llm.fastllm_lib.add_adapter_dict_llm_model(model, str(adapter_name).encode(), str(it).encode(), str(adapter_dict[it]).encode())
    if len(active_adapter) != 0:
        llm.fastllm_lib.set_adapter(model, str(active_adapter).encode())

    # 1. vocab
    if (tokenizer):
        if (hasattr(tokenizer, "tokenizer")):
            if modelInfo["model_type"] == "qwen":
                pass
            else:
                tokenizer = tokenizer.tokenizer;
        if (hasattr(tokenizer, "sp_model")):
            piece_size = tokenizer.sp_model.piece_size();
            for i in range(piece_size):
                llm.fastllm_lib.add_tokenizer_word_llm_model(model, tokenizer.sp_model.id_to_piece(i).encode(),
                                                             i, ctypes.c_float(tokenizer.sp_model.get_score(i)));
        else:
            vocab = tokenizer.get_vocab();
            for v in vocab.keys():
                if (modelInfo["model_type"] == "moss"):
                    vv = [(ord(c) if c not in tokenizer.byte_decoder else tokenizer.byte_decoder[c]) for c in v];
                    llm.fastllm_lib.add_tokenizer_word_llm_model(model, vv, vocab[v], ctypes.c_float(1.0));
                elif (modelInfo["model_type"] == "qwen"):
                    llm.fastllm_lib.add_tokenizer_word_llm_model(model, v, vocab[v], ctypes.c_float(1.0));
                else:
                    llm.fastllm_lib.add_tokenizer_word_llm_model(model, v.encode(), vocab[v], ctypes.c_float(1.0));
    tot = 0;
    for key in dict:
        ori_data_type = 0;
        ori_np_data_type = np.float32;
        cur_weight_type = 0;
        if (key in weight_type_dict and weight_type_dict[key] in fastllm_weight_type_dict):
            cur_weight_type = fastllm_weight_type_dict[weight_type_dict[key]];
        to_data_type = 0;

        if (cur_weight_type == 1):
            to_data_type = fastllm_data_type_dict[dtype];
            if (to_data_type == 7):
                ori_data_type = 7;
                ori_np_data_type = np.float16;
        elif (cur_weight_type == 2):
            # TODO bfloat
            to_data_type = 0;

        weight_name = key
        if peft_config is not None:
            weight_name = weight_name.replace('base_model.model.', '')
        if (cur_weight_type == 111):
            llm.fastllm_lib.add_qlinear_weight_llm_model(model, weight_name.encode(),
                                                 len(dict[key].shape),
                                                 (ctypes.c_int * len(dict[key].shape))(*list(dict[key].shape)),
                                                 weight_bits[key],
                                                 dict[key + "_scale"].numpy().astype(np.float32).ctypes.data_as(ctypes.c_void_p),
                                                 dict[key].numpy().ctypes.data_as(ctypes.c_void_p));
        else:
            llm.fastllm_lib.add_weight_llm_model(model, weight_name.encode(),
                                             len(dict[key].shape),
                                             (ctypes.c_int * len(dict[key].shape))(*list(dict[key].shape)),
                                             to_data_type, cur_weight_type, ori_data_type,
                                             dict[key].numpy().astype(ori_np_data_type).ctypes.data_as(ctypes.c_void_p));
        tot += 1;
        print("convert (", tot, "/", len(dict), end = " )\r");

    print("");
    llm.fastllm_lib.init_params_llm_model(model);
    llm.fastllm_lib.warmup_llm_model(model);
    ret = llm.model("", id = model);
    return ret;