llm.py 30.8 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import ctypes;
import math
import os;
import threading
from typing import Optional, Tuple, Union, List, Callable, Dict, Any;
from copy import deepcopy
import json

import platform
if platform.system() == 'Windows':
    fastllm_lib = ctypes.CDLL(os.path.join(os.path.split(os.path.realpath(__file__))[0], "fastllm_tools.dll"), winmode=0)
elif platform.system() == 'Darwin':
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.dylib"))
else:
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.so"))

fastllm_lib.create_llm_model.argtypes = [ctypes.c_char_p]
fastllm_lib.create_llm_model.restype = ctypes.c_int

fastllm_lib.token_decode.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.token_decode.restype = ctypes.c_int

fastllm_lib.token_encode_string.argtypes = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.token_encode_string.restype = ctypes.c_int

fastllm_lib.launch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p,
                                                  ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                  ctypes.c_float, ctypes.c_float, ctypes.c_bool,
                                                  ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.launch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_logits_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
fastllm_lib.fetch_response_logits_llm_model.restype = ctypes.c_int

fastllm_lib.response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_char_p,
                                               ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                               ctypes.c_float, ctypes.c_float, ctypes.c_bool]
# fastllm_lib.response_str_llm_model.restype = ctypes.c_char_p
fastllm_lib.response_str_llm_model.restype = ctypes.POINTER(ctypes.c_char)

fastllm_lib.launch_response_str_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool,
                                                     ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.launch_response_str_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
# fastllm_lib.fetch_response_str_llm_model.restype = ctypes.c_char_p
fastllm_lib.fetch_response_str_llm_model.restype = ctypes.POINTER(ctypes.c_char)

fastllm_lib.make_history_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_char_p]
# fastllm_lib.make_history_llm_model.restype = ctypes.c_char_p
fastllm_lib.make_history_llm_model.restype = ctypes.POINTER(ctypes.c_char)

fastllm_lib.make_input_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p]
# fastllm_lib.make_input_llm_model.restype = ctypes.c_char_p
fastllm_lib.make_input_llm_model.restype = ctypes.POINTER(ctypes.c_char)

fastllm_lib.add_tokenizer_word_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_float, ctypes.c_int]

fastllm_lib.set_device_map.argtype = [ctypes.c_int, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p]

fastllm_lib.get_llm_model_type.argtype = [ctypes.c_int]
fastllm_lib.get_llm_model_type.restype = ctypes.POINTER(ctypes.c_char)

fastllm_lib.response_batch_str_llm_model.argtypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_char_p), ctypes.c_int,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_str_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)

fastllm_lib.response_batch_tokens_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int),
                                                        ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                        ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_tokens_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)

fastllm_lib.freeChars.argtype = [ctypes.POINTER(ctypes.c_char)]
# fastllm_lib.freeChars.restype = ctypes.c_char_p

fastllm_lib.freeCharArray.argtype = [ctypes.POINTER(ctypes.c_char_p)]

def set_cpu_threads(threads: int):
    fastllm_lib.set_cpu_threads(threads);

def get_cpu_threads() -> int:
    return fastllm_lib.get_cpu_threads();

def print_ins_info():
    fastllm_lib.print_cpu_ins();

def set_cpu_kvcache(cpu_kvcache):
    fastllm_lib.set_kvcache_in_cpu(ctypes.c_bool(cpu_kvcache));

def get_cpu_kvcache():
    return fastllm_lib.get_kvcache_in_cpu();

def set_cpu_low_mem(low_mem):
    fastllm_lib.set_cpu_low_mem(ctypes.c_bool(low_mem));

def get_cpu_low_mem():
    return fastllm_lib.get_cpu_low_mem();

def set_device_map(device_map):
    devices = [];
    values = [];
    if (isinstance(device_map, str)):
        devices.append(device_map);
        values.append(1);
    elif (isinstance(device_map, list)):
        devices = [str(x) for x in device_map];
        values = [1 for x in device_map];
    elif (isinstance(device_map, dict)):
        devices = [str(x) for x in device_map.keys()];
        values = [int(device_map[x]) for x in device_map.keys()];
    else:
        print("set_device_map error.");
        return;
    device_str = ''.join(devices);
    device_len = [len(x) for x in devices];
    fastllm_lib.set_device_map(len(device_len),
                               (ctypes.c_int * len(device_len))(*device_len),
                               device_str.encode(),
                               (ctypes.c_int * len(values))(*values));
def from_hf(model,
            tokenizer = None,
            dtype = "float16"):
    from fastllm_pytools import hf_model;
    return hf_model.create(model, tokenizer, dtype = dtype);

class model:
    def __init__ (self, path : str,
                  id : int = -99999):
        if (id != -99999):
            self.model = id;
        else:
            self.model = fastllm_lib.create_llm_model(path.encode());
        self.direct_query = False;

        # 为了减少重复申请释放buffer对象而使用的线程局部存储区对象池
        self.thread_local_obj = threading.local()
        self.thread_local_obj.tokenizer_encode_string__output_buffer = None
        self.thread_local_obj.tokenizer_decode_token__output_buffer = None

        # tokenizer_decode_token 输出结果的静态缓存,手工触发构建
        # 由于token数量有限且不太多,所以缓存该结果来减少调用较为适合。
        # 不做成自动缓存是为了避免在多线程调用的时候对缓存dict加锁,同时也为不同场景提供选择空间
        self.tokenizer_decode_token_cache = None

        model_type_ptr = fastllm_lib.get_llm_model_type(self.model)
        self.model_type = ctypes.string_at(model_type_ptr).decode()
        fastllm_lib.freeChars(model_type_ptr)
        # print("model_type:", self.model_type)

    def get_prompt(self,
                   query: str,
                   history: List[Tuple[str, str]] = None) -> str:
        if (not(history)):
            history = [];
        prompt = "";
        for i, (old_query, response) in enumerate(history):
            history_ptr = fastllm_lib.make_history_llm_model(self.model, prompt.encode(), i, old_query.encode(), response.encode())
            prompt = ctypes.string_at(history_ptr).decode()
            fastllm_lib.freeChars(history_ptr)
        
        input_ptr = fastllm_lib.make_input_llm_model(self.model, prompt.encode(), len(history), query.encode())
        prompt = ctypes.string_at(input_ptr).decode()
        fastllm_lib.freeChars(input_ptr)
        return prompt;

    def save(self, path : str):
        fastllm_lib.save_llm_model(self.model, path.encode());

    def eval(self):
        pass;

    def build_tokenizer_decode_token_cache(self):
        if self.tokenizer_decode_token_cache is not None:
            return

        cache_dict = dict()
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model)
        for token_id in range(vocab_size):
            cache_dict[token_id] = self.tokenizer_decode_token(token_id)

        self.tokenizer_decode_token_cache = cache_dict

    def tokenizer_encode_string(self, content: str) -> List[int]:
        output_buffer_init_len = 1024
191
        if not hasattr(self.thread_local_obj, 'tokenizer_encode_string__output_buffer') or self.thread_local_obj.tokenizer_encode_string__output_buffer is None:
zhouxiang's avatar
zhouxiang committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            self.thread_local_obj.tokenizer_encode_string__output_buffer = (ctypes.c_int * output_buffer_init_len)()

        buffer = self.thread_local_obj.tokenizer_encode_string__output_buffer
        buffer_len = len(buffer)
        result_len = fastllm_lib.token_encode_string(self.model, content.encode(), buffer_len, buffer)
        if result_len > buffer_len:
            if result_len > 10240:
                # 要处理的数据过长,使用一次性的buffer
                temp_buffer = (ctypes.c_int * result_len)()
                ret = fastllm_lib.token_encode_string(self.model, content.encode(), result_len, temp_buffer)
                return [i for i in temp_buffer]
            else:
                # 扩展buffer大小
                new_buffer_len = round(math.ceil(result_len / 1024.0)) * 1024
                buffer = (ctypes.c_int * new_buffer_len)()
                self.thread_local_obj.tokenizer_encode_string__output_buffer = buffer
                result_len = fastllm_lib.token_encode_string(self.model, content.encode(), new_buffer_len, buffer)

        return [buffer[i] for i in range(result_len)]

    def tokenizer_decode_token(self, token_id: int) -> bytes:
        if self.tokenizer_decode_token_cache is not None:
            cache_result = self.tokenizer_decode_token_cache.get(token_id)
            if cache_result is not None:
                return cache_result

        output_buffer_init_len = 256
zhouxiang's avatar
zhouxiang committed
219
        if not hasattr(self.thread_local_obj, 'tokenizer_decode_token__output_buffer') or self.thread_local_obj.tokenizer_decode_token__output_buffer is None:
zhouxiang's avatar
zhouxiang committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            self.thread_local_obj.tokenizer_decode_token__output_buffer = ctypes.create_string_buffer(output_buffer_init_len)

        buffer = self.thread_local_obj.tokenizer_decode_token__output_buffer
        ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
        if ret > 0:
            # buffer长度不够,扩展buffer大小
            new_buffer_len = round(math.ceil(ret / 16.0)) * 16
            buffer = ctypes.create_string_buffer(new_buffer_len)
            self.thread_local_obj.tokenizer_decode_token__output_buffer = buffer
            ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
            assert ret == 0

        buffer_bytes = buffer.raw
        result_len = len(buffer_bytes)
        for i in range(len(buffer_bytes)):
            if buffer_bytes[i] == 0:
                result_len = i
                break
        return buffer_bytes[:result_len]

    def stop_token_ctypes(self, stop_token_ids):
        if stop_token_ids is None:
            return 0, None
        else:
            return ctypes.c_int(len(stop_token_ids)), (ctypes.c_int * len(stop_token_ids))(*stop_token_ids)
        
    def response_logits(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        tokenizer = None,
                        stop_token_ids: List[int] = None,
                        ) -> str:
        prompt = query if self.direct_query else self.get_prompt(query, history);
        stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)
        if (tokenizer == None):
            handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(1), ctypes.c_bool(False), ctypes.c_float(1), ctypes.c_int(1),
                                                           ctypes.c_float(1), ctypes.c_float(1), ctypes.c_bool(True),
                                                           stop_token_len, stop_token_list);
        else:
            input = tokenizer.encode(prompt);
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           1, False, 1, 1, 1, 1, True, stop_token_len, stop_token_list);
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model);
        logits = list(range(vocab_size))
        array = (ctypes.c_float * (vocab_size * 4))(*logits);
        ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        out = list(array)[:vocab_size];
        while (ret != -1):
            ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        return out;

    def response(self,
                 query: str,
                 history: List[Tuple[str, str]] = None,
                 max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                 stop_token_ids: List[int] = None) -> str:
        ret = "";
        for i in self.stream_response(query = query,
                                      history = history,
                                      max_length = max_length,
                                      do_sample = do_sample,
                                      top_p = top_p, top_k = top_k,
                                      temperature = temperature,
                                      repeat_penalty = repeat_penalty,
                                      one_by_one = True,
                                      stop_token_ids = stop_token_ids):
            ret += i;
        return ret;

    def stream_response(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                        one_by_one = True, stop_token_ids: List[int] = None):
        prompt = query if self.direct_query else self.get_prompt(query, history);
        stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids);
        handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                           ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False),
                                                           stop_token_len, stop_token_list);
        res = "";
        ret = b'';
        fail_cnt = 0;
        while True:
            # ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
            ret_chararry = fastllm_lib.fetch_response_str_llm_model(self.model, handle);
            ret += ctypes.string_at(ret_chararry)
            fastllm_lib.freeChars(ret_chararry)
            cur = "";
            try:
                cur = ret.decode()
                ret = b'';
            except:
                fail_cnt += 1;
                if (fail_cnt == 20):
                    break;
                else:
                    continue;
            fail_cnt = 0;
            if (cur == "<flmeos>"):
                break;
            if one_by_one:
                yield cur;
            else:
                res += cur;
                yield res;

    def stream_response_raw(self,
                            input_tokens: List[int],
                            max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                            one_by_one = True,
                            stop_token_ids: List[int] = None
                            ):
        stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input_tokens),
                                                       (ctypes.c_int * len(input_tokens))(*input_tokens),
                                                       ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                       ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False),
                                                       stop_token_len, stop_token_list)

        # 可能遇到长尾char需要多个token才能够生成,所以只返回bytes,string.decode策略交给外部
        # 方便统计输出token数量,和控制不完整utf8时候解码的逻辑

        total_bytes = b''
        while True:
            cur_token = fastllm_lib.fetch_response_llm_model(self.model, handle)
            if cur_token == -1:
                break

            cur_bytes = self.tokenizer_decode_token(cur_token)

            if one_by_one:
                yield cur_bytes
            else:
                total_bytes += cur_bytes
                yield total_bytes

    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192,
             do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01, stop_token_ids: List[int] = None, **kwargs):
        if self.model_type  != "chatglm3":
            if (not(history)):
                history = [];
            prompt = query if self.direct_query else self.get_prompt(query, history);
            input = tokenizer.encode(prompt);
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                       	   False, stop_token_len, stop_token_list);

            result = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                result.append(cur);
            response = tokenizer.decode(result);
            history = history + [(query, response)];
            return response, history;
        else:
            if history is None:
                history = []
            role = "user"
            input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
            history.append({"role": role, "content": query})			
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False, stop_token_len, stop_token_list);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
            response = tokenizer.decode(tokens);
            if response and response[-1] != "�":
                response, new_history = self.process_chatglm3_response(response, history)
                return response, new_history

    def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values = None,
                    max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                    return_past_key_values = False, stop_token_ids: List[int] = None, **kwargs) -> str:
        if self.model_type  != "chatglm3":
            if (not(history)):
                history = [];
            prompt = query if self.direct_query else self.get_prompt(query, history);
            input = tokenizer.encode(prompt);
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False, stop_token_len, stop_token_list);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
                response = tokenizer.decode(tokens);
                new_history = history + [(query, response)];
                if return_past_key_values:
                    yield response, new_history, None;
                else:
                    yield response, new_history;
        else:
            if history is None:
                history = []
            role = "user"
            input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
            history.append({"role": role, "content": query})
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids)

            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False, stop_token_len, stop_token_list);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
                response = tokenizer.decode(tokens);
                if response and response[-1] != "�":
                    response, new_history = self.process_chatglm3_response(response, history)
                    if return_past_key_values:
                        yield response, new_history, past_key_values
                    else:
                        yield response, new_history


    def set_adapter(self, name: str):
        fastllm_lib.set_adapter(self.model, str(name).encode())

    def disable_adapter(self):
        fastllm_lib.disable_adapter(self.model)

    def process_chatglm3_response(self, output, history):
        content = ""
        history = deepcopy(history)
        for response in output.split("<|assistant|>"):
            metadata, content = response.split("\n", maxsplit=1)
            if not metadata.strip():
                content = content.strip()
                history.append({"role": "assistant", "metadata": metadata, "content": content})
                content = content.replace("[[训练时间]]", "2023年")
            else:
                history.append({"role": "assistant", "metadata": metadata, "content": content})
                if history[0]["role"] == "system" and "tools" in history[0]:
                    content = "\n".join(content.split("\n")[1:-1])
                    def tool_call(**kwargs):
                        return kwargs
                    parameters = eval(content)
                    content = {"name": metadata.strip(), "parameters": parameters}
                else:
                    content = {"name": metadata.strip(), "content": content}
        return content, history

    def build_chatglm3_input(self, tokenizer, query, history=None, role="user"):
        if history is None:
            history = []
        input_ids = []
        for item in history:
            content = item["content"]
            if item["role"] == "system" and "tools" in item:
                content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
            input_ids.extend(tokenizer.build_single_message(item["role"], item.get("metadata", ""), content))
        input_ids.extend(tokenizer.build_single_message(role, "", query))
        input_ids.extend([tokenizer.get_command("<|assistant|>")])
        return input_ids

    def response_batch_raw(self, querys: List[str],
                       historys: List[List[Tuple[str, str]]] = None,
                       max_length: int = 1024, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                       **kwargs) -> List[str]:
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]
        inputs = (ctypes.c_char_p * query_size)()
        for i, query in enumerate(querys):
            prompt = query if self.direct_query else self.get_prompt(query, historys[i])
            inputs[i] = ctypes.c_char_p(prompt.encode())

        outputs = fastllm_lib.response_batch_str_llm_model(self.model, inputs, query_size,
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty, False)

        responses = []
        for i in range(query_size):
            response = ctypes.string_at(outputs[i]).decode()
            responses.append(response)
            historys[i] = historys[i] + [(querys[i], response)]
        fastllm_lib.freeCharArray(outputs, query_size)
        return responses, historys

    def chat_batch_raw(self, tokenizer, querys: List[str], historys: List[List[Tuple[str, str]]] = None, max_length: int = 1024,
                   do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01, **kwargs):
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]

        inputs = []
        inputs_len = []
        for i, query in enumerate(querys):
            prompt = query if self.direct_query else self.get_prompt(query, historys[i])
            input = tokenizer.encode(prompt);
            inputs.extend(input)
            inputs_len.append(len(input))

        outputs = fastllm_lib.response_batch_tokens_llm_model(self.model, query_size,
                                                                (ctypes.c_int * len(inputs_len))(*inputs_len),
                                                                (ctypes.c_int * len(inputs))(*inputs),
                                                                max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                                False)

        responses = []
        for i in range(query_size):
            response = ctypes.string_at(outputs[i]).decode()
            responses.append(response)
            historys[i] = historys[i] + [(querys[i], response)]
        fastllm_lib.freeCharArray(outputs, query_size)
        return responses, historys

    def response_batch(self, querys: List[str],
                       historys: List[List[Tuple[str, str]]] = None,
                       max_length: int = 1024, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01,
                       stop_token_ids: List[int] = None, **kwargs) -> List[str]:
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]
        handles = []
        for i, query in enumerate(querys):
            prompt = query if self.direct_query else self.get_prompt(query, historys[i])
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids);
            handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                           ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False),
                                                           stop_token_len, stop_token_list)
            handles.append(handle)

        responses = []
        for i, handle in enumerate(handles):
            res = ""
            ret = b''
            fail_cnt = 0
            while True:
                # ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
                ret_chararry = fastllm_lib.fetch_response_str_llm_model(self.model, handle);
                ret += ctypes.string_at(ret_chararry)
                fastllm_lib.freeChars(ret_chararry)
                cur = ""
                try:
                    cur = ret.decode()
                    ret = b''
                except:
                    fail_cnt += 1
                    if (fail_cnt == 20):
                        break
                    else:
                        continue
                fail_cnt = 0
                if (cur == "<flmeos>"):
                    break;
                res += cur
            responses.append(res)
            historys[i] = historys[i] + [(querys[i], res)]

        return responses, historys
   

    def chat_batch(self, tokenizer, querys: List[str], historys: List[List[Tuple[str, str]]] = None, max_length: int = 1024,
                   do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.01, stop_token_ids: List[int] = None, **kwargs):
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]

        handles = []
        for i, query in enumerate(querys):
            prompt = query if self.direct_query else self.get_prompt(query, historys[i])
            input = tokenizer.encode(prompt);
            stop_token_len, stop_token_list = self.stop_token_ctypes(stop_token_ids);
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False, stop_token_len, stop_token_list);
            handles.append(handle)

        responses = []
        for i, handle in enumerate(handles):
            result = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                result.append(cur);
            response = tokenizer.decode(result);
            responses.append(response)
            historys[i] = historys[i] + [(querys[i], response)]

        return responses, historys
    
    def release_memory(self):
        fastllm_lib.release_memory(self.model)