llm.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import ctypes;
import os;
from typing import Optional, Tuple, Union, List, Callable, Dict, Any;

import platform
if platform.system() == 'Windows':
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "fastllm_tools.dll"))
else:
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.so"))

fastllm_lib.create_llm_model.argtypes = [ctypes.c_char_p]
fastllm_lib.create_llm_model.restype = ctypes.c_int

fastllm_lib.launch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p,
                                                  ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                  ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_logits_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
fastllm_lib.fetch_response_logits_llm_model.restype = ctypes.c_int

fastllm_lib.response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_char_p,
                                               ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                               ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.launch_response_str_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_str_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_history_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_char_p]
fastllm_lib.make_history_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_input_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.make_input_llm_model.restype = ctypes.c_char_p

fastllm_lib.add_tokenizer_word_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_float, ctypes.c_int]

fastllm_lib.set_device_map.argtype = [ctypes.c_int, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p]

def set_cpu_threads(threads: int):
    fastllm_lib.set_cpu_threads(threads);

def get_cpu_threads() -> int:
    return fastllm_lib.get_cpu_threads();

def print_ins_info():
    fastllm_lib.print_cpu_ins();

def set_cpu_kvcache(cpu_kvcache):
    fastllm_lib.set_kvcache_in_cpu(ctypes.c_bool(cpu_kvcache));

def get_cpu_kvcache():
    return fastllm_lib.get_kvcache_in_cpu();

def set_cpu_low_mem(low_mem):
    fastllm_lib.set_cpu_low_mem(ctypes.c_bool(low_mem));

def get_cpu_low_mem():
    return fastllm_lib.get_cpu_low_mem();

def set_device_map(device_map):
    devices = [];
    values = [];
    if (isinstance(device_map, str)):
        devices.append(device_map);
        values.append(1);
    elif (isinstance(device_map, list)):
        devices = [str(x) for x in device_map];
        values = [1 for x in device_map];
    elif (isinstance(device_map, dict)):
        devices = [str(x) for x in device_map.keys()];
        values = [int(device_map[x]) for x in device_map.keys()];
    else:
        print("set_device_map error.");
        return;
    device_str = ''.join(devices);
    device_len = [len(x) for x in devices];
    fastllm_lib.set_device_map(len(device_len),
                               (ctypes.c_int * len(device_len))(*device_len),
                               device_str.encode(),
                               (ctypes.c_int * len(values))(*values));
def from_hf(model,
            tokenizer = None,
            dtype = "float16"):
    from fastllm_pytools import hf_model;
    return hf_model.create(model, tokenizer, dtype = dtype);

class model:
    def __init__ (self, path : str,
                  id : int = -99999):
        if (id != -99999):
            self.model = id;
        else:
            self.model = fastllm_lib.create_llm_model(path.encode());
        self.direct_query = False;

    def get_prompt(self,
                   query: str,
                   history: List[Tuple[str, str]] = None) -> str:
        if (not(history)):
            history = [];
        prompt = "";
        for i, (old_query, response) in enumerate(history):
            prompt = fastllm_lib.make_history_llm_model(self.model, prompt.encode(), i, old_query.encode(), response.encode()).decode();
        prompt = fastllm_lib.make_input_llm_model(self.model, prompt.encode(), len(history), query.encode()).decode();
        return prompt;

    def save(self, path : str):
        fastllm_lib.save_llm_model(self.model, path.encode());

    def eval(self):
        pass;

    def response_logits(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        tokenizer = None) -> str:
        prompt = query if self.direct_query else self.get_prompt(query, history);
        if (tokenizer == None):
            handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(1), ctypes.c_bool(False), ctypes.c_float(1), ctypes.c_int(1),
                                                           ctypes.c_float(1), ctypes.c_float(1), ctypes.c_bool(True));
        else:
            input = tokenizer.encode(prompt);
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           1, False, 1, 1, 1, 1, True);
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model);
        logits = list(range(vocab_size))
        array = (ctypes.c_float * (vocab_size * 4))(*logits);
        ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        out = list(array)[:vocab_size];
        while (ret != -1):
            ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        return out;

    def response(self,
                 query: str,
                 history: List[Tuple[str, str]] = None,
                 max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0) -> str:
        ret = "";
        for i in self.stream_response(query = query,
                                      history = history,
                                      max_length = max_length,
                                      do_sample = do_sample,
                                      top_p = top_p, top_k = top_k,
                                      temperature = temperature,
                                      repeat_penalty = repeat_penalty,
                                      one_by_one = True):
            ret += i;
        return ret;

    def stream_response(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                        one_by_one = True):
        prompt = query if self.direct_query else self.get_prompt(query, history);
        handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                           ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False));
        res = "";
        ret = b'';
        fail_cnt = 0;
        while True:
            ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
            cur = "";
            try:
                cur = ret.decode();
                ret = b'';
            except:
                fail_cnt += 1;
                if (fail_cnt == 20):
                    break;
                else:
                    continue;
            fail_cnt = 0;
            if (cur == "<flmeos>"):
                break;
            if one_by_one:
                yield cur;
            else:
                res += cur;
                yield res;

    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192,
             do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
        if (not(history)):
            history = [];
        prompt = query if self.direct_query else self.get_prompt(query, history);
        input = tokenizer.encode(prompt);
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                       max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                       False);

        result = [];
        while True:
            cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
            if (cur == -1):
                break;
            result.append(cur);
        response = tokenizer.decode(result);
        history = history + [(query, response)];
        return response, history;

    def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values = None,
                    max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                    return_past_key_values = False, **kwargs) -> str:
        if (not(history)):
            history = [];
        prompt = query if self.direct_query else self.get_prompt(query, history);
        input = tokenizer.encode(prompt);
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                       max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                       False);
        tokens = [];
        while True:
            cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
            if (cur == -1):
                break;
            tokens.append(cur);
            response = tokenizer.decode(tokens);
            new_history = history + [(query, response)];
            if return_past_key_values:
                yield response, new_history, None;
            else:
                yield response, new_history;