subgrid_models_test.py 7.69 KB
Newer Older
mashun1's avatar
jax-cfd  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for jax_cfd.subgrid_models."""
import functools

from absl.testing import absltest
from absl.testing import parameterized
import jax.numpy as jnp
from jax_cfd.base import advection
from jax_cfd.base import boundaries
from jax_cfd.base import finite_differences as fd
from jax_cfd.base import funcutils
from jax_cfd.base import grids
from jax_cfd.base import pressure
from jax_cfd.base import subgrid_models
from jax_cfd.base import test_util
import numpy as np


def periodic_grid_variable(data, offset, grid):
  return grids.GridVariable(
      array=grids.GridArray(data, offset, grid),
      bc=boundaries.periodic_boundary_conditions(grid.ndim))


def zero_velocity_field(grid: grids.Grid) -> grids.GridVariableVector:
  """Returns an all-zero periodic velocity fields."""
  return tuple(periodic_grid_variable(jnp.zeros(grid.shape), o, grid)
               for o in grid.cell_faces)


def sinusoidal_velocity_field(grid: grids.Grid) -> grids.GridVariableVector:
  """Returns a divergence-free velocity flow on `grid`."""
  mesh_size = jnp.array(grid.shape) * jnp.array(grid.step)
  vs = tuple(jnp.sin(2. * np.pi * g / s)
             for g, s in zip(grid.mesh(), mesh_size))
  return tuple(periodic_grid_variable(v, o, grid)
               for v, o in zip(vs[1:] + vs[:1], grid.cell_faces))


def gaussian_force_field(grid: grids.Grid) -> grids.GridArrayVector:
  """Returns a 'Gaussian-shaped' force field in the 'x' direction."""
  mesh = grid.mesh()
  mesh_size = jnp.array(grid.shape) * jnp.array(grid.step)
  offsets = grid.cell_faces
  v = [grids.GridArray(
      jnp.exp(-sum([jnp.square(x / s - .5)
                    for x, s in zip(mesh, mesh_size)]) * 100.),
      offsets[0], grid)]
  for j in range(1, grid.ndim):
    v.append(grids.GridArray(jnp.zeros(grid.shape), offsets[j], grid))
  return tuple(v)


def gaussian_forcing(v: grids.GridVariableVector) -> grids.GridArrayVector:
  """Returns Gaussian field forcing."""
  grid = grids.consistent_grid(*v)
  return gaussian_force_field(grid)


def momentum(v: grids.GridVariableVector, density: float):
  """Returns the momentum due to velocity field `v`."""
  grid = grids.consistent_grid(*v)
  return jnp.array([u.data for u in v]).sum() * density * jnp.array(
      grid.step).prod()


def _convect_upwind(v: grids.GridVariableVector) -> grids.GridArrayVector:
  return tuple(advection.advect_upwind(u, v) for u in v)


class SubgridModelsTest(test_util.TestCase):

  def test_smagorinsky_viscosity(self):
    grid = grids.Grid((3, 3))
    v = (periodic_grid_variable(jnp.zeros(grid.shape), (1, 0.5), grid),
         periodic_grid_variable(jnp.zeros(grid.shape), (0.5, 1), grid))
    c00 = grids.GridArray(jnp.zeros(grid.shape), offset=(0, 0), grid=grid)
    c01 = grids.GridArray(jnp.zeros(grid.shape), offset=(0, 1), grid=grid)
    c10 = grids.GridArray(jnp.zeros(grid.shape), offset=(1, 0), grid=grid)
    c11 = grids.GridArray(jnp.zeros(grid.shape), offset=(1, 1), grid=grid)
    s_ij = grids.GridArrayTensor(np.array([[c00, c01], [c10, c11]]))
    viscosity = subgrid_models.smagorinsky_viscosity(
        s_ij=s_ij, v=v, dt=0.1, cs=0.2)
    self.assertIsInstance(viscosity, grids.GridArrayTensor)
    self.assertEqual(viscosity.shape, (2, 2))
    self.assertAllClose(viscosity[0, 0], c00)
    self.assertAllClose(viscosity[0, 1], c01)
    self.assertAllClose(viscosity[1, 0], c10)
    self.assertAllClose(viscosity[1, 1], c11)

  def test_evm_model(self):
    grid = grids.Grid((3, 3))
    v = (
        periodic_grid_variable(jnp.zeros(grid.shape), (1, 0.5), grid),
        periodic_grid_variable(jnp.zeros(grid.shape), (0.5, 1), grid))
    viscosity_fn = functools.partial(
        subgrid_models.smagorinsky_viscosity, dt=1.0, cs=0.2)
    acceleration = subgrid_models.evm_model(v, viscosity_fn)
    self.assertIsInstance(acceleration, tuple)
    self.assertLen(acceleration, 2)
    self.assertAllClose(acceleration[0], v[0].array)
    self.assertAllClose(acceleration[1], v[1].array)

  @parameterized.named_parameters(
      dict(
          testcase_name='sinusoidal_velocity_base',
          cs=0.0,
          velocity=sinusoidal_velocity_field,
          forcing=None,
          shape=(100, 100),
          step=(1., 1.),
          density=1.,
          viscosity=1e-4,
          convect=advection.convect_linear,
          pressure_solve=pressure.solve_cg,
          dt=1e-3,
          time_steps=1000,
          divergence_atol=1e-3,
          momentum_atol=2e-3),
      dict(
          testcase_name='gaussian_force_upwind_with_subgrid_model',
          cs=0.12,
          velocity=zero_velocity_field,
          forcing=gaussian_forcing,
          shape=(40, 40, 40),
          step=(1., 1., 1.),
          density=1.,
          viscosity=0,
          convect=_convect_upwind,
          pressure_solve=pressure.solve_cg,
          dt=1e-3,
          time_steps=100,
          divergence_atol=1e-4,
          momentum_atol=1e-4),
      dict(
          testcase_name='sinusoidal_velocity_with_subgrid_model',
          cs=0.12,
          velocity=sinusoidal_velocity_field,
          forcing=None,
          shape=(100, 100),
          step=(1., 1.),
          density=1.,
          viscosity=1e-4,
          convect=advection.convect_linear,
          pressure_solve=pressure.solve_fast_diag,
          dt=1e-3,
          time_steps=1000,
          divergence_atol=1e-3,
          momentum_atol=1e-3),
  )
  def test_divergence_and_momentum(
      self,
      cs,
      velocity,
      forcing,
      shape,
      step,
      density,
      viscosity,
      convect,
      pressure_solve,
      dt,
      time_steps,
      divergence_atol,
      momentum_atol,
  ):
    grid = grids.Grid(shape, step)
    kwargs = dict(
        density=density,
        viscosity=viscosity,
        cs=cs,
        dt=dt,
        grid=grid,
        convect=convect,
        pressure_solve=pressure_solve,
        forcing=forcing)
    # Explicit and implicit navier-stokes solvers:
    explicit_eq = subgrid_models.explicit_smagorinsky_navier_stokes(**kwargs)
    implicit_eq = subgrid_models.implicit_smagorinsky_navier_stokes(**kwargs)

    v_initial = velocity(grid)
    v_final = funcutils.repeated(explicit_eq, time_steps)(v_initial)
    # TODO(dkochkov) consider adding more thorough tests for these models.
    with self.subTest('divergence free'):
      divergence = fd.divergence(v_final)
      self.assertLess(jnp.max(divergence.data), divergence_atol)

    with self.subTest('conservation of momentum'):
      initial_momentum = momentum(v_initial, density)
      final_momentum = momentum(v_final, density)
      if forcing is not None:
        expected_change = (
            jnp.array([f.data for f in forcing(v_initial)]).sum() *
            jnp.array(grid.step).prod() * dt * time_steps)
      else:
        expected_change = 0
      expected_momentum = initial_momentum + expected_change
      self.assertAllClose(expected_momentum, final_momentum, atol=momentum_atol)

    with self.subTest('explicit-implicit consistency'):
      v_final_2 = funcutils.repeated(implicit_eq, time_steps)(v_initial)
      for axis in range(grid.ndim):
        self.assertAllClose(v_final[axis], v_final_2[axis], atol=1e-4,
                            err_msg=f'axis={axis}')


if __name__ == '__main__':
  absltest.main()