test_wider_face.py 4.57 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
import os
import sys
import cv2

chenych's avatar
chenych committed
5
6
path = os.path.dirname(__file__)
CENTERNET_PATH = os.path.join(path, '../src/lib')
7

chenych's avatar
chenych committed
8
9
sys.path.insert(0, CENTERNET_PATH)

chenych's avatar
chenych committed
10
11
12
13
14
15
from opts_pose import opts
from detectors.detector_factory import detector_factory

import scipy.io as sio


16
def test_img(model_path, img_path, debug, threshold=0.4):
chenych's avatar
chenych committed
17
18
19
20
21
22
    TASK = 'multi_pose'
    input_h, intput_w = 800, 800
    opt = opts().init('--task {} --load_model {} --debug {} --input_h {} --input_w {}'.format(
        TASK, model_path, debug, intput_w, input_h).split(' '))

    detector = detector_factory[opt.task](opt)
23

chenych's avatar
chenych committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    ori_img = cv2.imread(img_path, -1)
    res = detector.run(ori_img)['results']
    draw_img = ori_img.copy()

    for b in res[1]:
        x1, y1, x2, y2, s = b[0], b[1], b[2], b[3], b[4]
        if s >= threshold:
            cv2.rectangle(draw_img, (int(x1), int(y1)),
                          (int(x2), int(y2)), (0, 0, 255))
            cv2.putText(draw_img, "Face:"+str(s)
                        [:3], (int(x1)-2, int(y1)-2), 0, 0.5, (255, 255, 255), 1)
    cv2.imwrite("./draw_img.jpg", draw_img)
    print("end.")


def test_vedio(model_path, debug, vedio_path=None):
    debug = -1  # return the result image with draw
    TASK = 'multi_pose'
    vis_thresh = 0.45
    input_h, intput_w = 800, 800
    opt = opts().init('--task {} --load_model {} --debug {} --input_h {} --input_w {} --vis_thresh {}'.format(
        TASK, model_path, debug, intput_w, input_h, vis_thresh).split(' '))
    detector = detector_factory[opt.task](opt)

    vedio = vedio_path if vedio_path else 0
    cap = cv2.VideoCapture(vedio)
    while cap.isOpened():
        det = cap.grab()
        if det:
            flag, frame = cap.retrieve()
            res = detector.run(frame)
            cv2.imshow('face detect', res['plot_img'])

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()


def test_wider_Face(model_path, debug, threshold=0.05):
    from progress.bar import Bar
chenych's avatar
chenych committed
65
    Path = '../datasets/images/val' # WIDER_val/images path
chenych's avatar
chenych committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    wider_face_mat = sio.loadmat('../evaluate/ground_truth/wider_face_val.mat')
    event_list = wider_face_mat['event_list']
    file_list = wider_face_mat['file_list']
    print("*** event_list", event_list)

    TASK = 'multi_pose'
    input_h, intput_w = 800, 800
    opt = opts().init('--task {} --load_model {} --debug {} --vis_thresh {} --input_h {} --input_w {}'.format(
        TASK, model_path, debug, threshold, input_h, intput_w).split(' '))
    detector = detector_factory[opt.task](opt)

    save_path = '../output/widerface/'
    for index, event in enumerate(event_list):
        file_list_item = file_list[index][0]
        im_file_dir = event[0][0]

        if not os.path.exists(save_path + im_file_dir):
            os.makedirs(save_path + im_file_dir)

        bar1 = Bar("Testing", max=len(file_list_item))
        for num, file in enumerate(file_list_item):
            im_name = file[0][0]

            im_zip_name = '{}/{}.jpg'.format(im_file_dir, im_name)

            img_path = os.path.join(Path, im_zip_name)
            ori_img = cv2.imread(img_path)
            if ori_img is None:
                print("*** img_path {} is empty!".format(img_path))
                continue
            dets = detector.run(ori_img)['results']
            f = open(save_path + im_file_dir + '/' + im_name + '.txt', 'w')
            f.write('{:s}\n'.format('%s/%s.jpg' % (im_file_dir, im_name)))
            f.write('{:d}\n'.format(len(dets)))
            for b in dets[1]:
                x1, y1, x2, y2, s = b[0], b[1], b[2], b[3], b[4]
                f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(
                    x1, y1, (x2 - x1 + 1), (y2 - y1 + 1), s))
            f.close()
            Bar.suffix = 'event:%d num:%d' % (index + 1, num + 1)
            bar1.next()


if __name__ == '__main__':
    '''
    debug = 0 # return the detect result without show
    debug = 1 # draw and show the result image
    debug = -1  # return the result image with draw
    '''
    debug = 0
116
117
118
119
120
121
122
    curr_path = os.getcwd()
    model_path = os.path.join(curr_path, 'models/model_best.pth')  # or your model path
    img_path = os.path.join(curr_path, "test_img/000388.jpg") # or your img path

    if 'src' in curr_path:
        model_path = os.path.join(curr_path, '../models/model_best.pth')  # or your model path
        img_path = os.path.join(curr_path, "../test_img/000388.jpg") # or your img path
chenych's avatar
chenych committed
123
    # 单图测试
124
    test_img(model_path, img_path, debug)
chenych's avatar
chenych committed
125
126
127
    # 视频测试
    # test_vedio(model_path, debug)
    # WIDER_val 数据集测试
chenych's avatar
chenych committed
128
    # test_wider_Face(model_path, debug)