gen_data.py 8.73 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding:utf-8 -*-

"""只需要按照实际改写images/annotations/categories另外两个字段其实可以忽略
在keypoints/categories内容是固定的不需修改
"""

import os
import json
import re
import cv2
import argparse

from tqdm import tqdm

import numpy as np


def get_landmark(txt_path, save_path):
    txt_write = open(save_path, 'w')
    annotationfile = open(txt_path)
    min_bbox = 10
    blur_value = 0.3
    Init = False
    img_path = None
    bbox_landmarks = []
    while (True):
        line = annotationfile.readline()[:-1]
        if not line:
            break
        if re.search('jpg', line):
            if Init:
                if len(bbox_landmarks) < 1:
                    continue
                txt_write.write(img_path + '\n')
                txt_write.write(str(len(bbox_landmarks)) + '\n')
                for lm in bbox_landmarks:
                    txt_write.write(str(lm)+'\n')
            Init = True
            img_path = line.split('# ')[1]  # line[2:]
            bbox_landmarks = []
            continue
        else:
            values = line.strip().split()
            bbox = values[:4]
            if min(int(bbox[2]), int(bbox[3])) < min_bbox:
                continue
            if len(values) > 4:
                if float(values[19]) < blur_value:
                    continue
                for li in range(5):
                    value = float(values[(li+2)*3])
                    if value == 0:  # visible
                        values[(li + 2) * 3] = str(2)
                    elif value == 1:  # visible
                        values[(li + 2) * 3] = str(1)
                    else:
                        values[3*li+4] = str(0)
                        values[3*li+5] = str(0)
                        values[3*li+6] = str(0)
            values = ' '.join(values)
            bbox_landmarks.append(values)
    txt_write.close()
    annotationfile.close()


class COCO(object):

    def info(self):
        return {"version": "1.0",
                "year": 2020,
                "contributor": "Mr.yang",
                "date_created": "2018/08/21",
                "github": "https://github.com/bleakie"}

    def licenses(self):
        return [
            {
                "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/",
                "name": "Attribution-NonCommercial-ShareAlike License",
                "id": 1
            }
        ]

    def image(self):
        return {
            "license": 4,
            "file_name": "000000397133.jpg",  # 图片名
            "coco_url":  "http://images.cocodataset.org/val2017/000000397133.jpg",  # 网路地址路径
            "height": 427,  # 高
            "width": 640,  # 宽
            "date_captured": "2013-11-14 17:02:52",  # 数据获取日期
            "flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg",  # flickr网路地址
            "id": 397133  # 图片的ID编号(每张图片ID是唯一的)
        }

    def annotation(self):
        return {
            "segmentation": [  # 对象的边界点(边界多边形)
                [
                    0., 0.,  # 第一个点 x,y坐标
                    0., 0.,  # 第二个点 x,y坐标
                    0., 0.,
                    0., 0.
                ]
            ],
            "num_keypoints": 5,
            # keypoints是按照以下关键点来标记的,如果nose 没有标则为0,0,0(3个数字为一组,分别为x,y,v v=0表示为标记此时的x=y=0,
            # v=1表示标记了但是在图上是不可见,v=2表示标记了,在图上可见)
            "keypoints": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            "area": 0.,  # 区域面积
            "iscrowd": 0,
            "image_id": 397133,  # 对应的图片ID(与images中的ID对应)
            "bbox": [0., 0., 0., 0.],  # 定位边框 [x,y,w,h]
            "category_id": 1,  # 类别ID(与categories中的ID对应)
            "id": 82445  # 对象ID,因为每一个图像有不止一个对象,所以要对每一个对象编号(每个对象的ID是唯一的)
        }

    def categorie(self):
        return {
            "supercategory": "face",  # 主类别
            "id": 1,  # 类对应的id (0 默认为背景)
            "name": "face",  # 子类别
            "keypoints": ["left_eye", "right_eye", "nose", "left_mouth", "right_mouth"],
            # "skeleton": [[1, 3], [2, 3], [3, 4], [3, 5]]
        }


class Keypoints2COCO(COCO):
    def __init__(self, label_path, save_json_path, images_path):
        self.label = open(label_path, )
        self.save_json_path = save_json_path  # 最终保存的json文件
        self.images_path = images_path  # 原始图片保存的位置
        self.images = []
        self.annotations = []
        # self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0
        self.num = 1
        self.keypoints = ["left_eye", "right_eye",
                          "nose", "left_mouth", "right_mouth"]
        self.num_keypoints = 5

    def __call__(self):
        while (True):
            img_path = self.label.readline()[:-1]
            if not img_path:
                break
            if img_path.endswith('.jpg'):
                img_full_path = os.path.join(self.images_path, img_path)
                if not os.path.exists(img_full_path):
                    # print("img not exist", img_full_path)
                    continue
                # print("img_full_path", img_full_path)
                # init image
                image = self.image()
                image["file_name"] = img_path
                image["id"] = self.num
                img = cv2.imread(img_full_path)
                if img is None:
                    continue

                image["height"] = img.shape[0]
                image["width"] = img.shape[1]

                line = self.label.readline()[:-1]

                if not line:
                    break
                facenum = (int)(line)
                # print("facenum", facenum)
                # init annotation
                annotation = self.annotation()
                for _ in range(facenum):
                    line = [float(x)
                            for x in self.label.readline().strip().split()]
                    # print("***", line)
                    bbox = list(line[:4])
                    if len(line) > 4:
                        line[6], line[9], line[12], line[15], line[18] = int(line[6]), int(
                            line[9]), int(line[12]), int(line[15]), int(line[18])
                        index = [line[6], line[9],
                                 line[12], line[15], line[18]]
                        self.num_keypoints = len(np.minimum(index, 1))
                        annotation['keypoints'] = line[4:-1]  # 默认为可见 v=2
                        annotation['num_keypoints'] = self.num_keypoints
                    annotation["image_id"] = self.num
                    annotation["id"] = self.annID
                    annotation["bbox"] = bbox
                    annotation['area'] = bbox[2]*bbox[3]
                    annotation['segmentation'] = [
                        bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3]]
                    self.annotations.append(annotation)

                    self.annID += 1  # 对应对象
                    annotation = self.annotation()  # 计算下一个对象

                self.num += 1  # 对应图像
                self.images.append(image)

        jsdata = {"info": self.info(), "licenses": self.licenses(), "images": self.images,
                  "annotations": self.annotations, "categories": [self.categorie()]}

        json.dump(jsdata, open(self.save_json_path, 'w'), indent=4,
                  default=float)  # python3 需加上default=float 否则会报错


parser = argparse.ArgumentParser()
# basic experiment setting
parser.add_argument('--mode', default='train',
                    help='Please input train or val')
chenych's avatar
chenych committed
212
parser.add_argument('--txtPath', default='./annotations/train/train_keypoints_widerface.txt')
chenych's avatar
chenych committed
213
214
215
216
217
218
219

opt = parser.parse_args()

if __name__ == "__main__":
    ROOT_PATH = './'
    label_type = opt.mode
    img_path = os.path.join(ROOT_PATH, 'images', f'{label_type}')
chenych's avatar
chenych committed
220
    txt_path = opt.txtPath
chenych's avatar
chenych committed
221
222
223
224
225
226
227
228
229
230
231
232
    save_landmark_path = txt_path[:txt_path.rfind('/')]
    save_landmark_path = os.path.join(
        save_landmark_path, f'landmark_{label_type}.txt')
    get_landmark(txt_path, save_landmark_path)  # 处理关键点标注数据

    save_label_path = os.path.join(ROOT_PATH, 'labels')
    if not os.path.exists(save_label_path):
        os.makedirs(save_label_path)
    save_label_path = os.path.join(
        save_label_path, f'./{label_type}_face.json')
    Keypoints2COCO(save_landmark_path, save_label_path, img_path)()
    print("dealing labels end.")