image.py 7.59 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# Modified by Xingyi Zhou
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import random

def flip(img):
  return img[:, :, ::-1].copy()  

def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=np.array([0, 0], dtype=np.float32),
                         inv=0):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        scale = np.array([scale, scale], dtype=np.float32)

    scale_tmp = scale
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, dst_w * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result


def crop(img, center, scale, output_size, rot=0):
    trans = get_affine_transform(center, scale, rot, output_size)

    dst_img = cv2.warpAffine(img,
                             trans,
                             (int(output_size[0]), int(output_size[1])),
                             flags=cv2.INTER_LINEAR)

    return dst_img


def gaussian_radius(det_size, min_overlap=0.7):
  height, width = det_size

  a1  = 1
  b1  = (height + width)
  c1  = width * height * (1 - min_overlap) / (1 + min_overlap)
  sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1)
  r1  = (b1 + sq1) / 2

  a2  = 4
  b2  = 2 * (height + width)
  c2  = (1 - min_overlap) * width * height
  sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2)
  r2  = (b2 + sq2) / 2

  a3  = 4 * min_overlap
  b3  = -2 * min_overlap * (height + width)
  c3  = (min_overlap - 1) * width * height
  sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3)
  r3  = (b3 + sq3) / 2
  return min(r1, r2, r3)


def gaussian2D(shape, sigma=1):
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m+1,-n:n+1]

    h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h

def draw_umich_gaussian(heatmap, center, radius, k=1):
  diameter = 2 * radius + 1                                         # 直径
  gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6)
  
  x, y = int(center[0]), int(center[1])

  height, width = heatmap.shape[0:2]
    
  left, right = min(x, radius), min(width - x, radius + 1)
  top, bottom = min(y, radius), min(height - y, radius + 1)

  masked_heatmap  = heatmap[y - top:y + bottom, x - left:x + right]         # 对那个区域进行赋值
  masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right]
  if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug
    np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
  return heatmap

def draw_dense_reg(regmap, heatmap, center, value, radius, is_offset=False):
  diameter = 2 * radius + 1
  gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6)
  value = np.array(value, dtype=np.float32).reshape(-1, 1, 1)
  dim = value.shape[0]
  reg = np.ones((dim, diameter*2+1, diameter*2+1), dtype=np.float32) * value
  if is_offset and dim == 2:
    delta = np.arange(diameter*2+1) - radius
    reg[0] = reg[0] - delta.reshape(1, -1)
    reg[1] = reg[1] - delta.reshape(-1, 1)
  
  x, y = int(center[0]), int(center[1])

  height, width = heatmap.shape[0:2]
    
  left, right = min(x, radius), min(width - x, radius + 1)
  top, bottom = min(y, radius), min(height - y, radius + 1)

  masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
  masked_regmap = regmap[:, y - top:y + bottom, x - left:x + right]
  masked_gaussian = gaussian[radius - top:radius + bottom,
                             radius - left:radius + right]
  masked_reg = reg[:, radius - top:radius + bottom,
                      radius - left:radius + right]
  if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug
    idx = (masked_gaussian >= masked_heatmap).reshape(
      1, masked_gaussian.shape[0], masked_gaussian.shape[1])
    masked_regmap = (1-idx) * masked_regmap + idx * masked_reg
  regmap[:, y - top:y + bottom, x - left:x + right] = masked_regmap
  return regmap


def draw_msra_gaussian(heatmap, center, sigma):
  tmp_size = sigma * 3
  mu_x = int(center[0] + 0.5)
  mu_y = int(center[1] + 0.5)
  w, h = heatmap.shape[0], heatmap.shape[1]
  ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
  br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
  if ul[0] >= h or ul[1] >= w or br[0] < 0 or br[1] < 0:
    return heatmap
  size = 2 * tmp_size + 1
  x = np.arange(0, size, 1, np.float32)
  y = x[:, np.newaxis]
  x0 = y0 = size // 2
  g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
  g_x = max(0, -ul[0]), min(br[0], h) - ul[0]
  g_y = max(0, -ul[1]), min(br[1], w) - ul[1]
  img_x = max(0, ul[0]), min(br[0], h)
  img_y = max(0, ul[1]), min(br[1], w)
  heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]] = np.maximum(
    heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]],
    g[g_y[0]:g_y[1], g_x[0]:g_x[1]])
  return heatmap

def grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def lighting_(data_rng, image, alphastd, eigval, eigvec):
    alpha = data_rng.normal(scale=alphastd, size=(3, ))
    image += np.dot(eigvec, eigval * alpha)

def blend_(alpha, image1, image2):
    image1 *= alpha
    image2 *= (1 - alpha)
    image1 += image2

def saturation_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    blend_(alpha, image, gs[:, :, None])

def brightness_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    image *= alpha

def contrast_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    blend_(alpha, image, gs_mean)

def color_aug(data_rng, image, eig_val, eig_vec):
    functions = [brightness_, contrast_, saturation_]
    random.shuffle(functions)

    gs = grayscale(image)
    gs_mean = gs.mean()
    for f in functions:
        f(data_rng, image, gs, gs_mean, 0.4)
    lighting_(data_rng, image, 0.1, eig_val, eig_vec)