ddd_utils.py 4.44 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2

def compute_box_3d(dim, location, rotation_y):
  # dim: 3
  # location: 3
  # rotation_y: 1
  # return: 8 x 3
  c, s = np.cos(rotation_y), np.sin(rotation_y)
  R = np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]], dtype=np.float32)
  l, w, h = dim[2], dim[1], dim[0]
  x_corners = [l/2, l/2, -l/2, -l/2, l/2, l/2, -l/2, -l/2]
  y_corners = [0,0,0,0,-h,-h,-h,-h]
  z_corners = [w/2, -w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2]

  corners = np.array([x_corners, y_corners, z_corners], dtype=np.float32)
  corners_3d = np.dot(R, corners) 
  corners_3d = corners_3d + np.array(location, dtype=np.float32).reshape(3, 1)
  return corners_3d.transpose(1, 0)

def project_to_image(pts_3d, P):
  # pts_3d: n x 3
  # P: 3 x 4
  # return: n x 2
  pts_3d_homo = np.concatenate(
    [pts_3d, np.ones((pts_3d.shape[0], 1), dtype=np.float32)], axis=1)
  pts_2d = np.dot(P, pts_3d_homo.transpose(1, 0)).transpose(1, 0)
  pts_2d = pts_2d[:, :2] / pts_2d[:, 2:]
  # import pdb; pdb.set_trace()
  return pts_2d

def compute_orientation_3d(dim, location, rotation_y):
  # dim: 3
  # location: 3
  # rotation_y: 1
  # return: 2 x 3
  c, s = np.cos(rotation_y), np.sin(rotation_y)
  R = np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]], dtype=np.float32)
  orientation_3d = np.array([[0, dim[2]], [0, 0], [0, 0]], dtype=np.float32)
  orientation_3d = np.dot(R, orientation_3d)
  orientation_3d = orientation_3d + \
                   np.array(location, dtype=np.float32).reshape(3, 1)
  return orientation_3d.transpose(1, 0)

def draw_box_3d(image, corners, c=(0, 0, 255)):
  face_idx = [[0,1,5,4],
              [1,2,6, 5],
              [2,3,7,6],
              [3,0,4,7]]
  for ind_f in range(3, -1, -1):
    f = face_idx[ind_f]
    for j in range(4):
      cv2.line(image, (corners[f[j], 0], corners[f[j], 1]),
               (corners[f[(j+1)%4], 0], corners[f[(j+1)%4], 1]), c, 2, lineType=cv2.LINE_AA)
    if ind_f == 0:
      cv2.line(image, (corners[f[0], 0], corners[f[0], 1]),
               (corners[f[2], 0], corners[f[2], 1]), c, 1, lineType=cv2.LINE_AA)
      cv2.line(image, (corners[f[1], 0], corners[f[1], 1]),
               (corners[f[3], 0], corners[f[3], 1]), c, 1, lineType=cv2.LINE_AA)
  return image

def unproject_2d_to_3d(pt_2d, depth, P):
  # pts_2d: 2
  # depth: 1
  # P: 3 x 4
  # return: 3
  z = depth - P[2, 3]
  x = (pt_2d[0] * depth - P[0, 3] - P[0, 2] * z) / P[0, 0]
  y = (pt_2d[1] * depth - P[1, 3] - P[1, 2] * z) / P[1, 1]
  pt_3d = np.array([x, y, z], dtype=np.float32)
  return pt_3d

def alpha2rot_y(alpha, x, cx, fx):
    """
    Get rotation_y by alpha + theta - 180
    alpha : Observation angle of object, ranging [-pi..pi]
    x : Object center x to the camera center (x-W/2), in pixels
    rotation_y : Rotation ry around Y-axis in camera coordinates [-pi..pi]
    """
    rot_y = alpha + np.arctan2(x - cx, fx)
    if rot_y > np.pi:
      rot_y -= 2 * np.pi
    if rot_y < -np.pi:
      rot_y += 2 * np.pi
    return rot_y

def rot_y2alpha(rot_y, x, cx, fx):
    """
    Get rotation_y by alpha + theta - 180
    alpha : Observation angle of object, ranging [-pi..pi]
    x : Object center x to the camera center (x-W/2), in pixels
    rotation_y : Rotation ry around Y-axis in camera coordinates [-pi..pi]
    """
    alpha = rot_y - np.arctan2(x - cx, fx)
    if alpha > np.pi:
      alpha -= 2 * np.pi
    if alpha < -np.pi:
      alpha += 2 * np.pi
    return alpha


def ddd2locrot(center, alpha, dim, depth, calib):
  # single image
  locations = unproject_2d_to_3d(center, depth, calib)
  locations[1] += dim[0] / 2
  rotation_y = alpha2rot_y(alpha, center[0], calib[0, 2], calib[0, 0])
  return locations, rotation_y

def project_3d_bbox(location, dim, rotation_y, calib):
  box_3d = compute_box_3d(dim, location, rotation_y)
  box_2d = project_to_image(box_3d, calib)
  return box_2d


if __name__ == '__main__':
  calib = np.array(
    [[7.070493000000e+02, 0.000000000000e+00, 6.040814000000e+02, 4.575831000000e+01],
     [0.000000000000e+00, 7.070493000000e+02, 1.805066000000e+02, -3.454157000000e-01],
     [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 4.981016000000e-03]],
    dtype=np.float32)
  alpha = -0.20
  tl = np.array([712.40, 143.00], dtype=np.float32)
  br = np.array([810.73, 307.92], dtype=np.float32)
  ct = (tl + br) / 2
  rotation_y = 0.01
  print('alpha2rot_y', alpha2rot_y(alpha, ct[0], calib[0, 2], calib[0, 0]))
  print('rotation_y', rotation_y)