mobilenet_v2.py 9.86 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from torch import nn
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict
import math


__all__ = ['MobileNetV2']


model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
}


def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

class ConvBNReLU(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes),
            nn.ReLU6(inplace=True)
        )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            # pw
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            # dw
            ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oup),
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self,width_mult=1.0,round_nearest=8,):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        inverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1], # 0
            [6, 24, 2, 2], # 1
            [6, 32, 3, 2], # 2
            [6, 64, 4, 2], # 3
            [6, 96, 3, 1], # 4
            [6, 160, 3, 2],# 5
            [6, 320, 1, 1],# 6
        ]
        self.feat_id = [1,2,4,6]
        self.feat_channel = []

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
            raise ValueError("inverted_residual_setting should be non-empty "
                             "or a 4-element list, got {}".format(inverted_residual_setting))

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]

        # building inverted residual blocks
        for id,(t, c, n, s) in enumerate(inverted_residual_setting):
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
            if id in self.feat_id  :
                self.__setattr__("feature_%d"%id,nn.Sequential(*features))
                self.feat_channel.append(output_channel)
                features = []

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)

    def forward(self, x):
        y = []
        for id in self.feat_id:
            x = self.__getattr__("feature_%d"%id)(x)
            y.append(x)
        return y

def load_model(model,state_dict):
    new_model=model.state_dict()
    new_keys = list(new_model.keys())
    old_keys = list(state_dict.keys())
    restore_dict = OrderedDict()
    for id in range(len(new_keys)):
        restore_dict[new_keys[id]] = state_dict[old_keys[id]]
    model.load_state_dict(restore_dict)

def dict2list(func):
    def wrap(*args, **kwargs):
        self = args[0]
        x = args[1]
        ret_list = []
        ret = func(self, x)
        for k, v in ret[0].items():
            ret_list.append(v)
        return ret_list
    return wrap

def fill_up_weights(up):
    w = up.weight.data
    f = math.ceil(w.size(2) / 2)
    c = (2 * f - 1 - f % 2) / (2. * f)
    for i in range(w.size(2)):
        for j in range(w.size(3)):
            w[0, 0, i, j] = \
                (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
    for c in range(1, w.size(0)):
        w[c, 0, :, :] = w[0, 0, :, :]

def fill_fc_weights(layers):
    for m in layers.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.normal_(m.weight, std=0.001)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)


class IDAUp(nn.Module):
    def __init__(self, out_dim, channel):
        super(IDAUp, self).__init__()
        self.out_dim = out_dim
        self.up = nn.Sequential(
                    nn.ConvTranspose2d(
                        out_dim, out_dim, kernel_size=2, stride=2, padding=0,
                        output_padding=0, groups=out_dim, bias=False),
                    nn.BatchNorm2d(out_dim,eps=0.001,momentum=0.1),
                    nn.ReLU())
        self.conv =  nn.Sequential(
                    nn.Conv2d(channel, out_dim,
                              kernel_size=1, stride=1, bias=False),
                    nn.BatchNorm2d(out_dim,eps=0.001,momentum=0.1),
                    nn.ReLU(inplace=True))

    def forward(self, layers):
        layers = list(layers)
        x = self.up(layers[0])
        y = self.conv(layers[1])
        out = x + y
        return out

class MobileNetUp(nn.Module):
    def __init__(self, channels, out_dim = 24):
        super(MobileNetUp, self).__init__()
        channels =  channels[::-1]
        self.conv =  nn.Sequential(
                    nn.Conv2d(channels[0], out_dim,
                              kernel_size=1, stride=1, bias=False),
                    nn.BatchNorm2d(out_dim,eps=0.001,momentum=0.1),
                    nn.ReLU(inplace=True))
        self.conv_last =  nn.Sequential(
                    nn.Conv2d(out_dim,out_dim,
                              kernel_size=3, stride=1, padding=1 ,bias=False),
                    nn.BatchNorm2d(out_dim,eps=1e-5,momentum=0.01),
                    nn.ReLU(inplace=True))

        for i,channel in enumerate(channels[1:]):
            setattr(self,'up_%d'%(i),IDAUp(out_dim,channel))

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m,nn.ConvTranspose2d):
                fill_up_weights(m)

    def forward(self, layers):
        layers = list(layers)
        assert len(layers) > 1
        x = self.conv(layers[-1])
        for i in range(0,len(layers)-1):
            up = getattr(self, 'up_{}'.format(i))
            x = up([x,layers[len(layers)-2-i]])
        x = self.conv_last(x)
        return x

class MobileNetSeg(nn.Module):
    def __init__(self, base_name,heads,head_conv=24, pretrained = True):
        super(MobileNetSeg, self).__init__()
        self.heads = heads
        self.base = globals()[base_name](
            pretrained=pretrained)
        channels = self.base.feat_channel
        self.dla_up = MobileNetUp(channels, out_dim=head_conv)
        for head in self.heads:
            classes = self.heads[head]
            fc =nn.Conv2d(head_conv, classes,
                          kernel_size=1, stride=1,
                          padding=0, bias=True)
            if 'hm' in head:
                fc.bias.data.fill_(-2.19)
            else:
                nn.init.normal_(fc.weight, std=0.001)
                nn.init.constant_(fc.bias, 0)
            self.__setattr__(head, fc)

    # @dict2list         # 转onnx的时候需要将输出由dict转成list模式
    def forward(self, x):
        x = self.base(x)
        x = self.dla_up(x)
        ret = {}
        for head in self.heads:
            ret[head] = self.__getattr__(head)(x)
        return [ret]


def mobilenetv2_10(pretrained=True, **kwargs):
    model = MobileNetV2(width_mult=1.0)
    if pretrained:
        state_dict = model_zoo.load_url(model_urls['mobilenet_v2'],
                                              progress=True)
        load_model(model,state_dict)
    return model

def mobilenetv2_5(pretrained=False, **kwargs):
    model = MobileNetV2(width_mult=0.5)
    if pretrained:
        print('This version does not have pretrain weights.')
    return model

# num_layers  : [10 , 5]
def get_mobile_net(num_layers, heads, head_conv=24):
  model = MobileNetSeg('mobilenetv2_{}'.format(num_layers), heads,
                 pretrained=True,
                 head_conv=head_conv)
  return model


if __name__ == '__main__':
    import torch
    input = torch.zeros([1,3,416,416])
    model = get_mobile_net(5,{'hm':1,'reg':2,'wh':2},head_conv=24)          # hm reference for the classes of objects//这个头文件只能做矩形框检测
    res = model(input)
    print(res.shape)