large_hourglass.py 9.67 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# ------------------------------------------------------------------------------
# This code is base on 
# CornerNet (https://github.com/princeton-vl/CornerNet)
# Copyright (c) 2018, University of Michigan
# Licensed under the BSD 3-Clause License
# ------------------------------------------------------------------------------


from __future__ import absolute_import, division, print_function

import numpy as np
import torch
import torch.nn as nn


class convolution(nn.Module):
    def __init__(self, k, inp_dim, out_dim, stride=1, with_bn=True):
        super(convolution, self).__init__()

        pad = (k - 1) // 2
        self.conv = nn.Conv2d(inp_dim, out_dim, (k, k), padding=(pad, pad), stride=(stride, stride), bias=not with_bn)
        self.bn   = nn.BatchNorm2d(out_dim) if with_bn else nn.Sequential()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        conv = self.conv(x)
        bn   = self.bn(conv)
        relu = self.relu(bn)
        return relu

class fully_connected(nn.Module):
    def __init__(self, inp_dim, out_dim, with_bn=True):
        super(fully_connected, self).__init__()
        self.with_bn = with_bn

        self.linear = nn.Linear(inp_dim, out_dim)
        if self.with_bn:
            self.bn = nn.BatchNorm1d(out_dim)
        self.relu   = nn.ReLU(inplace=True)

    def forward(self, x):
        linear = self.linear(x)
        bn     = self.bn(linear) if self.with_bn else linear
        relu   = self.relu(bn)
        return relu

class residual(nn.Module):
    def __init__(self, k, inp_dim, out_dim, stride=1, with_bn=True):
        super(residual, self).__init__()

        self.conv1 = nn.Conv2d(inp_dim, out_dim, (3, 3), padding=(1, 1), stride=(stride, stride), bias=False)
        self.bn1   = nn.BatchNorm2d(out_dim)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(out_dim, out_dim, (3, 3), padding=(1, 1), bias=False)
        self.bn2   = nn.BatchNorm2d(out_dim)
        
        self.skip  = nn.Sequential(
            nn.Conv2d(inp_dim, out_dim, (1, 1), stride=(stride, stride), bias=False),
            nn.BatchNorm2d(out_dim)
        ) if stride != 1 or inp_dim != out_dim else nn.Sequential()
        self.relu  = nn.ReLU(inplace=True)

    def forward(self, x):
        conv1 = self.conv1(x)
        bn1   = self.bn1(conv1)
        relu1 = self.relu1(bn1)

        conv2 = self.conv2(relu1)
        bn2   = self.bn2(conv2)

        skip  = self.skip(x)
        return self.relu(bn2 + skip)

def make_layer(k, inp_dim, out_dim, modules, layer=convolution, **kwargs):
    layers = [layer(k, inp_dim, out_dim, **kwargs)]
    for _ in range(1, modules):
        layers.append(layer(k, out_dim, out_dim, **kwargs))
    return nn.Sequential(*layers)

def make_layer_revr(k, inp_dim, out_dim, modules, layer=convolution, **kwargs):
    layers = []
    for _ in range(modules - 1):
        layers.append(layer(k, inp_dim, inp_dim, **kwargs))
    layers.append(layer(k, inp_dim, out_dim, **kwargs))
    return nn.Sequential(*layers)

class MergeUp(nn.Module):
    def forward(self, up1, up2):
        return up1 + up2

def make_merge_layer(dim):
    return MergeUp()

# def make_pool_layer(dim):
#     return nn.MaxPool2d(kernel_size=2, stride=2)

def make_pool_layer(dim):
    return nn.Sequential()

def make_unpool_layer(dim):
    return nn.Upsample(scale_factor=2)

def make_kp_layer(cnv_dim, curr_dim, out_dim):
    return nn.Sequential(
        convolution(3, cnv_dim, curr_dim, with_bn=False),
        nn.Conv2d(curr_dim, out_dim, (1, 1))
    )

def make_inter_layer(dim):
    return residual(3, dim, dim)

def make_cnv_layer(inp_dim, out_dim):
    return convolution(3, inp_dim, out_dim)

class kp_module(nn.Module):
    def __init__(
        self, n, dims, modules, layer=residual,
        make_up_layer=make_layer, make_low_layer=make_layer,
        make_hg_layer=make_layer, make_hg_layer_revr=make_layer_revr,
        make_pool_layer=make_pool_layer, make_unpool_layer=make_unpool_layer,
        make_merge_layer=make_merge_layer, **kwargs
    ):
        super(kp_module, self).__init__()

        self.n   = n

        curr_mod = modules[0]
        next_mod = modules[1]

        curr_dim = dims[0]
        next_dim = dims[1]

        self.up1  = make_up_layer(
            3, curr_dim, curr_dim, curr_mod, 
            layer=layer, **kwargs
        )  
        self.max1 = make_pool_layer(curr_dim)
        self.low1 = make_hg_layer(
            3, curr_dim, next_dim, curr_mod,
            layer=layer, **kwargs
        )
        self.low2 = kp_module(
            n - 1, dims[1:], modules[1:], layer=layer, 
            make_up_layer=make_up_layer, 
            make_low_layer=make_low_layer,
            make_hg_layer=make_hg_layer,
            make_hg_layer_revr=make_hg_layer_revr,
            make_pool_layer=make_pool_layer,
            make_unpool_layer=make_unpool_layer,
            make_merge_layer=make_merge_layer,
            **kwargs
        ) if self.n > 1 else \
        make_low_layer(
            3, next_dim, next_dim, next_mod,
            layer=layer, **kwargs
        )
        self.low3 = make_hg_layer_revr(
            3, next_dim, curr_dim, curr_mod,
            layer=layer, **kwargs
        )
        self.up2  = make_unpool_layer(curr_dim)

        self.merge = make_merge_layer(curr_dim)

    def forward(self, x):
        up1  = self.up1(x)
        max1 = self.max1(x)
        low1 = self.low1(max1)
        low2 = self.low2(low1)
        low3 = self.low3(low2)
        up2  = self.up2(low3)
        return self.merge(up1, up2)

class exkp(nn.Module):
    def __init__(
        self, n, nstack, dims, modules, heads, pre=None, cnv_dim=256, 
        make_tl_layer=None, make_br_layer=None,
        make_cnv_layer=make_cnv_layer, make_heat_layer=make_kp_layer,
        make_tag_layer=make_kp_layer, make_regr_layer=make_kp_layer,
        make_up_layer=make_layer, make_low_layer=make_layer, 
        make_hg_layer=make_layer, make_hg_layer_revr=make_layer_revr,
        make_pool_layer=make_pool_layer, make_unpool_layer=make_unpool_layer,
        make_merge_layer=make_merge_layer, make_inter_layer=make_inter_layer, 
        kp_layer=residual
    ):
        super(exkp, self).__init__()

        self.nstack    = nstack
        self.heads     = heads

        curr_dim = dims[0]

        self.pre = nn.Sequential(
            convolution(7, 3, 128, stride=2),
            residual(3, 128, 256, stride=2)
        ) if pre is None else pre

        self.kps  = nn.ModuleList([
            kp_module(
                n, dims, modules, layer=kp_layer,
                make_up_layer=make_up_layer,
                make_low_layer=make_low_layer,
                make_hg_layer=make_hg_layer,
                make_hg_layer_revr=make_hg_layer_revr,
                make_pool_layer=make_pool_layer,
                make_unpool_layer=make_unpool_layer,
                make_merge_layer=make_merge_layer
            ) for _ in range(nstack)
        ])
        self.cnvs = nn.ModuleList([
            make_cnv_layer(curr_dim, cnv_dim) for _ in range(nstack)
        ])

        self.inters = nn.ModuleList([
            make_inter_layer(curr_dim) for _ in range(nstack - 1)
        ])

        self.inters_ = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(curr_dim, curr_dim, (1, 1), bias=False),
                nn.BatchNorm2d(curr_dim)
            ) for _ in range(nstack - 1)
        ])
        self.cnvs_   = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(cnv_dim, curr_dim, (1, 1), bias=False),
                nn.BatchNorm2d(curr_dim)
            ) for _ in range(nstack - 1)
        ])

        ## keypoint heatmaps
        for head in heads.keys():
            if 'hm' in head:
                module =  nn.ModuleList([
                    make_heat_layer(
                        cnv_dim, curr_dim, heads[head]) for _ in range(nstack)
                ])
                self.__setattr__(head, module)
                for heat in self.__getattr__(head):
                    heat[-1].bias.data.fill_(-2.19)
            else:
                module = nn.ModuleList([
                    make_regr_layer(
                        cnv_dim, curr_dim, heads[head]) for _ in range(nstack)
                ])
                self.__setattr__(head, module)


        self.relu = nn.ReLU(inplace=True)

    def forward(self, image):
        # print('image shape', image.shape)
        inter = self.pre(image)
        outs  = []

        for ind in range(self.nstack):
            kp_, cnv_  = self.kps[ind], self.cnvs[ind]
            kp  = kp_(inter)
            cnv = cnv_(kp)

            out = {}
            for head in self.heads:
                layer = self.__getattr__(head)[ind]
                y = layer(cnv)
                out[head] = y
            
            outs.append(out)
            if ind < self.nstack - 1:
                inter = self.inters_[ind](inter) + self.cnvs_[ind](cnv)
                inter = self.relu(inter)
                inter = self.inters[ind](inter)
        return outs


def make_hg_layer(kernel, dim0, dim1, mod, layer=convolution, **kwargs):
    layers  = [layer(kernel, dim0, dim1, stride=2)]
    layers += [layer(kernel, dim1, dim1) for _ in range(mod - 1)]
    return nn.Sequential(*layers)


class HourglassNet(exkp):
    def __init__(self, heads, num_stacks=2):
        n       = 5
        dims    = [256, 256, 384, 384, 384, 512]
        modules = [2, 2, 2, 2, 2, 4]

        super(HourglassNet, self).__init__(
            n, num_stacks, dims, modules, heads,
            make_tl_layer=None,
            make_br_layer=None,
            make_pool_layer=make_pool_layer,
            make_hg_layer=make_hg_layer,
            kp_layer=residual, cnv_dim=256
        )

def get_large_hourglass_net(num_layers, heads, head_conv):
  model = HourglassNet(heads, 2)
  return model