hardnet.py 5.96 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


class ConvLayer(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel=3, stride=1, dropout=0.1):
        super().__init__()
        self.add_module('conv', nn.Conv2d(in_channels, out_channels, kernel_size=kernel,
                                          stride=stride, padding=kernel//2, bias = False))
        self.add_module('norm', nn.BatchNorm2d(out_channels))
        self.add_module('relu', nn.ReLU(inplace=True))

    def forward(self, x):
        return super().forward(x)
        


class HarDBlock(nn.Module):
    def get_link(self, layer, base_ch, growth_rate, grmul):
        if layer == 0:
          return base_ch, 0, []
        out_channels = growth_rate
        link = []
        for i in range(10):
          dv = 2 ** i
          if layer % dv == 0:
            k = layer - dv
            link.append(k)
            if i > 0:
                out_channels *= grmul
        out_channels = int(int(out_channels + 1) / 2) * 2
        in_channels = 0
        for i in link:
          ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul)
          in_channels += ch
        return out_channels, in_channels, link

    def get_out_ch(self):
        return self.out_channels
 
    def __init__(self, in_channels, growth_rate, grmul, n_layers, keepBase=False, residual_out=False):
        super().__init__()
        self.keepBase = keepBase
        self.links = []
        layers_ = []
        self.out_channels = 0 # if upsample else in_channels
        for i in range(n_layers):
          outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
          self.links.append(link)
          use_relu = residual_out
          layers_.append(ConvLayer(inch, outch))
          if (i % 2 == 0) or (i == n_layers - 1):
            self.out_channels += outch
        #print("Blk out =",self.out_channels)
        self.layers = nn.ModuleList(layers_)


    def forward(self, x):
        layers_ = [x]
        for layer in range(len(self.layers)):
            link = self.links[layer]
            tin = []
            for i in link:
                tin.append(layers_[i])
            if len(tin) > 1:
                x = torch.cat(tin, 1)
            else:
                x = tin[0]
            out = self.layers[layer](x)
            layers_.append(out)
        t = len(layers_)
        out_ = []
        for i in range(t):
          if (i == 0 and self.keepBase) or \
             (i == t-1) or (i%2 == 1):
              out_.append(layers_[i])
        out = torch.cat(out_, 1)
        return out



class TransitionUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        #print("upsample",in_channels, out_channels)

    def forward(self, x, skip, concat=True):
        out = F.interpolate(
                x,
                size=(skip.size(2), skip.size(3)),
                mode="bilinear",
                align_corners=True,
                            )
        if concat:                            
          out = torch.cat([out, skip], 1)
          
        return out

class hardnet(nn.Module):
    def __init__(self):
        super(hardnet, self).__init__()

        first_ch  = [16,24,32,48]
        ch_list = [  64, 96, 160, 224, 320]
        grmul = 1.7
        gr       = [  10,16,18,24,32]
        n_layers = [   4, 4, 8, 8, 8]

        blks = len(n_layers) 
        self.shortcut_layers = []

        self.base = nn.ModuleList([])
        self.base.append (
             ConvLayer(in_channels=3, out_channels=first_ch[0], kernel=3,
                       stride=2) )
        self.base.append ( ConvLayer(first_ch[0], first_ch[1],  kernel=3) )
        self.base.append ( ConvLayer(first_ch[1], first_ch[2],  kernel=3, stride=2) )
        self.base.append ( ConvLayer(first_ch[2], first_ch[3],  kernel=3) )

        skip_connection_channel_counts = []
        ch = first_ch[3]
        for i in range(blks):
            blk = HarDBlock(ch, gr[i], grmul, n_layers[i])
            ch = blk.get_out_ch()
            skip_connection_channel_counts.append(ch)
            self.base.append ( blk )
            if i < blks-1:
              self.shortcut_layers.append(len(self.base)-1)

            self.base.append ( ConvLayer(ch, ch_list[i], kernel=1) )
            ch = ch_list[i]
            
            if i < blks-1:            
              self.base.append ( nn.AvgPool2d(kernel_size=2, stride=2) )


        cur_channels_count = ch
        prev_block_channels = ch
        n_blocks = blks-1
        self.n_blocks =  n_blocks

        #######################
        #   Upsampling path   #
        #######################

        self.transUpBlocks = nn.ModuleList([])
        self.denseBlocksUp = nn.ModuleList([])
        self.conv1x1_up    = nn.ModuleList([])
        
        for i in range(n_blocks-1,-1,-1):
            self.transUpBlocks.append(TransitionUp(prev_block_channels, prev_block_channels))
            cur_channels_count = prev_block_channels + skip_connection_channel_counts[i]
            self.conv1x1_up.append(ConvLayer(cur_channels_count, cur_channels_count//2, kernel=1))
            cur_channels_count = cur_channels_count//2

            blk = HarDBlock(cur_channels_count, gr[i], grmul, n_layers[i])
            
            self.denseBlocksUp.append(blk)
            prev_block_channels = blk.get_out_ch()
            cur_channels_count = prev_block_channels


    def forward(self, x):
        
        skip_connections = []
        size_in = x.size()
        
        
        for i in range(len(self.base)):
            x = self.base[i](x)
            if i in self.shortcut_layers:
                skip_connections.append(x)
        out = x
        
        for i in range(self.n_blocks):
            skip = skip_connections.pop()
            out = self.transUpBlocks[i](out, skip, True)
            out = self.conv1x1_up[i](out)
            out = self.denseBlocksUp[i](out)
        
        return out


def get_hard_net(num_layers, cfg):
  model = hardnet()
  return model