multi_pose.py 14.6 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import re
import math
import torch
import json
import cv2

from utils.image import flip, color_aug
from utils.image import get_affine_transform, affine_transform
from utils.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian
from utils.image import draw_dense_reg
from utils.utils import Data_anchor_sample
from utils.Randaugmentations import Randaugment
from PIL import Image

import torch.utils.data as data
import numpy as np

TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])

if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
    from torch._six import container_abcs, string_classes, int_classes
else:
    string_classes = str
    int_classes = int
    import collections.abc as container_abcs

np_str_obj_array_pattern = re.compile(r'[SaUO]')

class MultiPoseDataset(data.Dataset):
  def _coco_box_to_bbox(self, box):
    bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]],
                    dtype=np.float32)
    return bbox

  def _get_border(self, border, size):
    i = 1
    while size - border // i <= border // i:
        i *= 2
    return border // i

  def __getitem__(self, index):
    img_id = self.images[index]
    file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
    img_path = os.path.join(self.img_dir, file_name)
    ann_ids = self.coco.getAnnIds(imgIds=[img_id])
    anns = self.coco.loadAnns(ids=ann_ids)
    num_objs = len(anns)
    # num_objs = min(len(anns), self.max_objs)
    if num_objs > self.max_objs:
        num_objs = self.max_objs
        anns = np.random.choice(anns, num_objs)


    img = cv2.imread(img_path)
    img, anns = Data_anchor_sample(img, anns)

    # # for test the keypoint order
    # img1 = cv2.flip(img,1)
    # for ann in anns:
    #   width = img1.shape[1]
    #   bbox = self._coco_box_to_bbox(ann['bbox'])
    #   bbox[[0, 2]] = width - bbox[[2, 0]] - 1
    #   pts = np.array(ann['keypoints'], np.float32).reshape(5, 3)
    #
    #   # for flip
    #   pts[:, 0] = width - pts[:, 0] - 1
    #   for e in self.flip_idx:
    #     pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()
    #
    #   # for debug show
    #   def add_coco_bbox(image, bbox, conf=1):
    #     txt = '{}{:.1f}'.format('person', conf)
    #     font = cv2.FONT_HERSHEY_SIMPLEX
    #     cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 255), 2)
    #     cv2.putText(image, txt, (bbox[0], bbox[1] - 2),
    #                 font, 0.5, (0, 255, 0), thickness=1, lineType=cv2.LINE_AA)
    #
    #   def add_coco_hp(image, points, keypoints_prob=1):
    #     for j in range(5):
    #       if keypoints_prob > 0.5:
    #         if j == 0:
    #           cv2.circle(image, (points[j, 0], points[j, 1]), 2, (255, 255, 0), -1)
    #         elif j == 1:
    #           cv2.circle(image, (points[j, 0], points[j, 1]), 2, (255, 0, 0), -1)
    #         elif j == 2:
    #           cv2.circle(image, (points[j, 0], points[j, 1]), 2, (0, 255, 0), -1)
    #         elif j == 3:
    #           cv2.circle(image, (points[j, 0], points[j, 1]), 2, (0, 0, 255), -1)
    #         elif j == 4:
    #           cv2.circle(image, (points[j, 0], points[j, 1]), 2, (0, 0, 0), -1)
    #     return image
    #
    #   bbox = [int(x) for x in bbox]
    #   add_coco_bbox(img1, bbox )
    #   add_coco_hp(img1, pts)
    #   cv2.imshow('mat', img1)
    #   cv2.waitKey(5000)

    height, width = img.shape[0], img.shape[1]
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
    s = max(img.shape[0], img.shape[1]) * 1.0
    rot = 0

    flipped = False
    if self.split == 'train':
      if not self.opt.not_rand_crop:
        # s = s * np.random.choice(np.arange(0.8, 1.1, 0.1))
        # s = s * np.random.choice(np.arange(0.3, 1.2, 0.1))
        s = s # not scale
        # _border = np.random.randint(128*0.4, 128*1.4)
        _border = s * np.random.choice([0.1, 0.2, 0.25])
        w_border = self._get_border(_border, img.shape[1])
        h_border = self._get_border(_border, img.shape[0])
        c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border)
        c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border)
      else:
        sf = self.opt.scale
        cf = self.opt.shift
        c[0] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
        c[1] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
        s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
      if np.random.random() < self.opt.aug_rot:
        rf = self.opt.rotate
        rot = np.clip(np.random.randn()*rf, -rf*2, rf*2)

      if np.random.random() < self.opt.flip:
        flipped = True
        img = img[:, ::-1, :]
        c[0] =  width - c[0] - 1

    trans_input = get_affine_transform(
      c, s, rot, [self.opt.input_res, self.opt.input_res])
    inp = cv2.warpAffine(img, trans_input,
                         (self.opt.input_res, self.opt.input_res),
                         flags=cv2.INTER_LINEAR)

    inp = (inp.astype(np.float32) / 255.)
    if self.split == 'train' and not self.opt.no_color_aug:
      # 随机进行图片增强
      color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
      # inp = Randaugment(self._data_rng, inp, self._eig_val, self._eig_vec)

    inp = (inp - self.mean) / self.std
    inp = inp.transpose(2, 0, 1)

    output_res = self.opt.output_res
    num_joints = self.num_joints
    trans_output_rot = get_affine_transform(c, s, rot, [output_res, output_res])
    trans_output = get_affine_transform(c, s, 0, [output_res, output_res])

    hm = np.zeros((self.num_classes, output_res, output_res), dtype=np.float32)
    hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32)
    dense_kps = np.zeros((num_joints, 2, output_res, output_res),
                          dtype=np.float32)
    dense_kps_mask = np.zeros((num_joints, output_res, output_res),
                               dtype=np.float32)
    wh = np.zeros((self.max_objs, 2), dtype=np.float32)
    kps = np.zeros((self.max_objs, num_joints * 2), dtype=np.float32)
    reg = np.zeros((self.max_objs, 2), dtype=np.float32)
    ind = np.zeros((self.max_objs), dtype=np.int64)
    reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
    wight_mask = np.ones((self.max_objs), dtype=np.float32)
    kps_mask = np.zeros((self.max_objs, self.num_joints * 2), dtype=np.uint8)
    hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)
    hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
    hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)

    draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
                    draw_umich_gaussian

    gt_det = []
    for k in range(num_objs):
      ann = anns[k]
      bbox = self._coco_box_to_bbox(ann['bbox'])
      cls_id = int(ann['category_id']) - 1
      pts = np.array(ann['keypoints'], np.float32).reshape(num_joints, 3)
      if flipped:
        bbox[[0, 2]] = width - bbox[[2, 0]] - 1
        pts[:, 0] = width - pts[:, 0] - 1
        for e in self.flip_idx:
          pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()

      bbox[:2] = affine_transform(bbox[:2], trans_output)
      bbox[2:] = affine_transform(bbox[2:], trans_output)
      bbox = np.clip(bbox, 0, output_res - 1)
      h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
      if (h > 0 and w > 0) or (rot != 0):
        radius = gaussian_radius((math.ceil(h), math.ceil(w)))
        radius = self.opt.hm_gauss if self.opt.mse_loss else max(0, int(radius))
        ct = np.array(
          [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32)       # 人脸的中心坐标
        ct_int = ct.astype(np.int32)                        # 整数化
        # wh[k] = 1. * w, 1. * h                            # 2. centernet的方式
        wh[k] = np.log(1. * w / 4), np.log(1. * h / 4)      # 2. 人脸bbox的高度和宽度,centerface论文的方式
        ind[k] = ct_int[1] * output_res + ct_int[0]         # 人脸bbox在1/4特征图中的索引
        reg[k] = ct - ct_int                                # 3. 人脸bbox中心点整数化的偏差
        reg_mask[k] = 1                                     # 是否需要用于计算误差
        # if w*h <= 20:
        #     wight_mask[k] = 15

        num_kpts = pts[:, 2].sum()                           # 没有关键点标注的时哦
        if num_kpts == 0 or w*h <= 8:                        # 没有关键点标注的都是比较困难的样本
          # print('没有关键点标注或者人脸bbox小于8像素')
          hm[cls_id, ct_int[1], ct_int[0]] = 0.9999
          # reg_mask[k] = 0

        hp_radius = gaussian_radius((math.ceil(h), math.ceil(w)))
        hp_radius = self.opt.hm_gauss \
                    if self.opt.mse_loss else max(0, int(hp_radius))
        for j in range(num_joints):
          if pts[j, 2] > 0:
            pts[j, :2] = affine_transform(pts[j, :2], trans_output_rot)
            if pts[j, 0] >= 0 and pts[j, 0] < output_res and \
               pts[j, 1] >= 0 and pts[j, 1] < output_res:
              kps[k, j * 2: j * 2 + 2] = pts[j, :2] - ct_int                # 4. 关键点相对于人脸bbox的中心的偏差
              kps_mask[k, j * 2: j * 2 + 2] = 1
              pt_int = pts[j, :2].astype(np.int32)                          # 关键点整数化
              hp_offset[k * num_joints + j] = pts[j, :2] - pt_int           # 关键点整数化的偏差
              hp_ind[k * num_joints + j] = pt_int[1] * output_res + pt_int[0]   # 索引
              hp_mask[k * num_joints + j] = 1                                   # 计算损失的mask
              if self.opt.dense_hp:
                # must be before draw center hm gaussian
                draw_dense_reg(dense_kps[j], hm[cls_id], ct_int,
                               pts[j, :2] - ct_int, radius, is_offset=True)
                draw_gaussian(dense_kps_mask[j], ct_int, radius)
              draw_gaussian(hm_hp[j], pt_int, hp_radius)                    # 1. 关键点高斯map
              if ann['bbox'][2]*ann['bbox'][3] <= 16.0:                   # 太小的人脸忽略
                kps_mask[k, j * 2: j * 2 + 2] = 0
        draw_gaussian(hm[cls_id], ct_int, radius)
        gt_det.append([ct[0] - w / 2, ct[1] - h / 2,
                       ct[0] + w / 2, ct[1] + h / 2, 1] +
                       pts[:, :2].reshape(num_joints * 2).tolist() + [cls_id])
    if rot != 0:
      hm = hm * 0 + 0.9999
      reg_mask *= 0
      kps_mask *= 0
    ret = {'input': inp, 'hm': hm, 'reg_mask': reg_mask, 'ind': ind, 'wh': wh,
           'landmarks': kps, 'hps_mask': kps_mask, 'wight_mask': wight_mask}
    if self.opt.dense_hp:
      dense_kps = dense_kps.reshape(num_joints * 2, output_res, output_res)
      dense_kps_mask = dense_kps_mask.reshape(
        num_joints, 1, output_res, output_res)
      dense_kps_mask = np.concatenate([dense_kps_mask, dense_kps_mask], axis=1)
      dense_kps_mask = dense_kps_mask.reshape(
        num_joints * 2, output_res, output_res)
      ret.update({'dense_hps': dense_kps, 'dense_hps_mask': dense_kps_mask})
      del ret['hps'], ret['hps_mask']
    if self.opt.reg_offset:
      ret.update({'hm_offset': reg})                  # 人脸bbox中心点整数化的偏差
    if self.opt.hm_hp:
      ret.update({'hm_hp': hm_hp})
    if self.opt.reg_hp_offset:
      ret.update({'hp_offset': hp_offset, 'hp_ind': hp_ind, 'hp_mask': hp_mask})
    if self.opt.debug > 0 or not self.split == 'train':
      gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
               np.zeros((1, 40), dtype=np.float32)
      meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
      ret['meta'] = meta
    return ret


_use_shared_memory = False

error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}"

numpy_type_map = {
    'float64': torch.DoubleTensor,
    'float32': torch.FloatTensor,
    'float16': torch.HalfTensor,
    'int64': torch.LongTensor,
    'int32': torch.IntTensor,
    'int16': torch.ShortTensor,
    'int8': torch.CharTensor,
    'uint8': torch.ByteTensor,
}


def default_collate(batch):
    r"""Puts each data field into a tensor with outer dimension batch size"""

    elem_type = type(batch[0])
    if isinstance(batch[0], torch.Tensor):
        out = None
        if _use_shared_memory:
            # If we're in a background process, concatenate directly into a
            # shared memory tensor to avoid an extra copy
            numel = sum([x.numel() for x in batch])
            storage = batch[0].storage()._new_shared(numel)
            out = batch[0].new(storage)
        return torch.stack(batch, 0, out=out)
    elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
            and elem_type.__name__ != 'string_':
        elem = batch[0]
        if elem_type.__name__ == 'ndarray':
            # array of string classes and object
            if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
                raise TypeError(error_msg_fmt.format(elem.dtype))

            return default_collate([torch.from_numpy(b) for b in batch])
        if elem.shape == ():  # scalars
            py_type = float if elem.dtype.name.startswith('float') else int
            return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
    elif isinstance(batch[0], float):
        return torch.tensor(batch, dtype=torch.float64)
    elif isinstance(batch[0], int_classes):
        return torch.tensor(batch)
    elif isinstance(batch[0], string_classes):
        return batch
    elif isinstance(batch[0], container_abcs.Mapping):
        return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
    elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'):  # namedtuple
        return type(batch[0])(*(default_collate(samples) for samples in zip(*batch)))
    elif isinstance(batch[0], container_abcs.Sequence):
        transposed = zip(*batch)
        return [default_collate(samples) for samples in transposed]

    raise TypeError((error_msg_fmt.format(type(batch[0]))))


def multipose_collate(batch):
  objects_dims = [d.shape[0] for d in batch]
  index = objects_dims.index(max(objects_dims))

  # one_dim = True if len(batch[0].shape) == 1 else False
  res = []
  for i in range(len(batch)):
      tres = np.zeros_like(batch[index], dtype=batch[index].dtype)
      tres[:batch[i].shape[0]] = batch[i]
      res.append(tres)

  return res


def Multiposebatch(batch):
  sample_batch = {}
  for key in batch[0]:
    if key in ['hm', 'input']:
      sample_batch[key] = default_collate([d[key] for d in batch])
    else:
      align_batch = multipose_collate([d[key] for d in batch])
      sample_batch[key] = default_collate(align_batch)

  return sample_batch