ctdet.py 6.65 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch.utils.data as data
import numpy as np
import torch
import json
import cv2
import os
from utils.image import flip, color_aug
from utils.image import get_affine_transform, affine_transform
from utils.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian
from utils.image import draw_dense_reg
import math
import matplotlib.pyplot as plt


class CTDetDataset(data.Dataset):
    def _coco_box_to_bbox(self, box):
        bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]],
                        dtype=np.float32)
        return bbox

    def _get_border(self, border, size):
        i = 1
        while size - border // i <= border // i:
            i *= 2
        return border // i

    def __getitem__(self, index):
        img_id = self.images[index]
        file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
        img_path = os.path.join(self.img_dir, file_name)
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        anns = self.coco.loadAnns(ids=ann_ids)
        num_objs = min(len(anns), self.max_objs)

        img = cv2.imread(img_path)

        height, width = img.shape[0], img.shape[1]
        c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32)
        if self.opt.keep_res:
            input_h = (height | self.opt.pad) + 1
            input_w = (width | self.opt.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
        else:
            s = max(img.shape[0], img.shape[1]) * 1.0
            input_h, input_w = self.opt.input_h, self.opt.input_w

        flipped = False
        if self.split == 'train':
            if not self.opt.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = self._get_border(128, img.shape[1])
                h_border = self._get_border(128, img.shape[0])
                c[0] = np.random.randint(
                    low=w_border, high=img.shape[1] - w_border)
                c[1] = np.random.randint(
                    low=h_border, high=img.shape[0] - h_border)
            else:
                sf = self.opt.scale
                cf = self.opt.shift
                c[0] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
                c[1] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
                s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.opt.flip:
                flipped = True
                img = img[:, ::-1, :]
                c[0] = width - c[0] - 1

        trans_input = get_affine_transform(
            c, s, 0, [input_w, input_h])
        inp = cv2.warpAffine(img, trans_input,
                             (input_w, input_h),
                             flags=cv2.INTER_LINEAR)
        inp = (inp.astype(np.float32) / 255.)
        if self.split == 'train' and not self.opt.no_color_aug:
            color_aug(self._data_rng, inp, self._eig_val, self._eig_vec)
        inp = (inp - self.mean) / self.std
        inp = inp.transpose(2, 0, 1)

        output_h = input_h // self.opt.down_ratio
        output_w = input_w // self.opt.down_ratio
        num_classes = self.num_classes
        trans_output = get_affine_transform(c, s, 0, [output_w, output_h])

        hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
        cat_spec_wh = np.zeros(
            (self.max_objs, num_classes * 2), dtype=np.float32)
        cat_spec_mask = np.zeros(
            (self.max_objs, num_classes * 2), dtype=np.uint8)

        draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \
            draw_umich_gaussian

        gt_det = []
        for k in range(num_objs):
            ann = anns[k]
            bbox = self._coco_box_to_bbox(ann['bbox'])
            cls_id = int(self.cat_ids[ann['category_id']])
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius(
                    (math.ceil(h), math.ceil(w)))                # 高斯半径
                radius = max(0, int(radius))
                radius = self.opt.hm_gauss if self.opt.mse_loss else radius
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32)       # 求中点
                ct_int = ct.astype(np.int32)
                # 每个类别一个channel
                draw_gaussian(hm[cls_id], ct_int, radius)
                # 目标的wh
                wh[k] = 1. * w, 1. * h
                ind[k] = ct_int[1] * output_w + \
                    ct_int[0]                     # 索引,y*w + x
                # 整数化的误差
                reg[k] = ct - ct_int
                reg_mask[k] = 1
                cat_spec_wh[k, cls_id * 2: cls_id * 2 + 2] = wh[k]
                cat_spec_mask[k, cls_id * 2: cls_id * 2 + 2] = 1
                if self.opt.dense_wh:
                    draw_dense_reg(dense_wh, hm.max(
                        axis=0), ct_int, wh[k], radius)
                gt_det.append([ct[0] - w / 2, ct[1] - h / 2,
                               ct[0] + w / 2, ct[1] + h / 2, 1, cls_id])

        ret = {'input': inp, 'hm': hm,
               'reg_mask': reg_mask, 'ind': ind, 'wh': wh}
        if self.opt.dense_wh:
            hm_a = hm.max(axis=0, keepdims=True)
            dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0)
            ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask})
            del ret['wh']
        elif self.opt.cat_spec_wh:
            ret.update({'cat_spec_wh': cat_spec_wh,
                       'cat_spec_mask': cat_spec_mask})
            del ret['wh']
        if self.opt.reg_offset:
            ret.update({'reg': reg})
        if self.opt.debug > 0 or not self.split == 'train':
            gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \
                np.zeros((1, 6), dtype=np.float32)
            meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id}
            ret['meta'] = meta
        return ret