pascal.py 3.24 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import torch
import json

import numpy as np
import torch.utils.data as data
import pycocotools.coco as coco


class PascalVOC(data.Dataset):
    num_classes = 20
    default_resolution = [384, 384]
    mean = np.array([0.485, 0.456, 0.406],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.229, 0.224, 0.225],
                   dtype=np.float32).reshape(1, 1, 3)

    def __init__(self, opt, split):
        super(PascalVOC, self).__init__()
        self.data_dir = os.path.join(opt.data_dir, 'voc')
        self.img_dir = os.path.join(self.data_dir, 'images')
        _ann_name = {'train': 'trainval0712', 'val': 'test2007'}
        self.annot_path = os.path.join(
            self.data_dir, 'annotations',
            'pascal_{}.json').format(_ann_name[split])
        self.max_objs = 50
        self.class_name = ['__background__', "aeroplane", "bicycle", "bird", "boat",
                           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
                           "horse", "motorbike", "person", "pottedplant", "sheep", "sofa",
                           "train", "tvmonitor"]
        self._valid_ids = np.arange(1, 21, dtype=np.int32)
        self.cat_ids = {v: i for i, v in enumerate(self._valid_ids)}
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        self.split = split
        self.opt = opt

        print('==> initializing pascal {} data.'.format(_ann_name[split]))
        self.coco = coco.COCO(self.annot_path)
        self.images = sorted(self.coco.getImgIds())
        self.num_samples = len(self.images)

        print('Loaded {} {} samples'.format(split, self.num_samples))

    def _to_float(self, x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        detections = [[[] for __ in range(self.num_samples)]
                      for _ in range(self.num_classes + 1)]
        for i in range(self.num_samples):
            img_id = self.images[i]
            for j in range(1, self.num_classes + 1):
                if isinstance(all_bboxes[img_id][j], np.ndarray):
                    detections[j][i] = all_bboxes[img_id][j].tolist()
                else:
                    detections[j][i] = all_bboxes[img_id][j]
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(save_dir, "results.json")
        # detections  = self.convert_eval_format(results)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        os.system('python tools/reval.py ' +
                  '{}/results.json'.format(save_dir))