coco_hp.py 4.62 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import pycocotools.coco as coco
from pycocotools.cocoeval import COCOeval
import numpy as np
import json
import os

import torch.utils.data as data


class COCOHP(data.Dataset):
    num_classes = 1
    num_joints = 17
    default_resolution = [512, 512]
    mean = np.array([0.40789654, 0.44719302, 0.47026115],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.28863828, 0.27408164, 0.27809835],
                   dtype=np.float32).reshape(1, 1, 3)
    flip_idx = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10],
                [11, 12], [13, 14], [15, 16]]

    def __init__(self, opt, split):
        super(COCOHP, self).__init__()
        self.edges = [[0, 1], [0, 2], [1, 3], [2, 4],
                      [4, 6], [3, 5], [5, 6],
                      [5, 7], [7, 9], [6, 8], [8, 10],
                      [6, 12], [5, 11], [11, 12],
                      [12, 14], [14, 16], [11, 13], [13, 15]]

        self.acc_idxs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
        self.data_dir = os.path.join(opt.data_dir, 'coco')
        self.img_dir = os.path.join(self.data_dir, '{}2017'.format(split))
        if split == 'test':
            self.annot_path = os.path.join(
                self.data_dir, 'annotations',
                'image_info_test-dev2017.json').format(split)
        else:
            self.annot_path = os.path.join(
                self.data_dir, 'annotations',
                'person_keypoints_{}2017.json').format(split)
        self.max_objs = 32
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        self.split = split
        self.opt = opt

        print('==> initializing coco 2017 {} data.'.format(split))
        self.coco = coco.COCO(self.annot_path)
        image_ids = self.coco.getImgIds()

        if split == 'train':
            self.images = []
            for img_id in image_ids:
                idxs = self.coco.getAnnIds(imgIds=[img_id])
                if len(idxs) > 0:
                    self.images.append(img_id)
        else:
            self.images = image_ids
        self.num_samples = len(self.images)
        print('Loaded {} {} samples'.format(split, self.num_samples))

    def _to_float(self, x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        # import pdb; pdb.set_trace()
        detections = []
        for image_id in all_bboxes:
            for cls_ind in all_bboxes[image_id]:
                category_id = 1
                for dets in all_bboxes[image_id][cls_ind]:
                    bbox = dets[:4]
                    bbox[2] -= bbox[0]
                    bbox[3] -= bbox[1]
                    score = dets[4]
                    bbox_out = list(map(self._to_float, bbox))
                    keypoints = np.concatenate([
                        np.array(dets[5:39], dtype=np.float32).reshape(-1, 2),
                        np.ones((17, 1), dtype=np.float32)], axis=1).reshape(51).tolist()
                    keypoints = list(map(self._to_float, keypoints))

                    detection = {
                        "image_id": int(image_id),
                        "category_id": int(category_id),
                        "bbox": bbox_out,
                        "score": float("{:.2f}".format(score)),
                        "keypoints": keypoints
                    }
                    detections.append(detection)
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(opt.save_dir, "results.json")
        # detections  = convert_eval_format(all_boxes)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        coco_dets = self.coco.loadRes('{}/results.json'.format(save_dir))
        coco_eval = COCOeval(self.coco, coco_dets, "keypoints")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()
        coco_eval = COCOeval(self.coco, coco_dets, "bbox")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()