coco.py 5.64 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import pycocotools.coco as coco
from pycocotools.cocoeval import COCOeval
import numpy as np
import json
import os

import torch.utils.data as data


class COCO(data.Dataset):
    num_classes = 80
    default_resolution = [512, 512]
    mean = np.array([0.40789654, 0.44719302, 0.47026115],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.28863828, 0.27408164, 0.27809835],
                   dtype=np.float32).reshape(1, 1, 3)

    def __init__(self, opt, split):
        super(COCO, self).__init__()
        self.data_dir = os.path.join(opt.data_dir, 'coco')
        self.img_dir = os.path.join(self.data_dir, '{}2017'.format(split))
        if split == 'test':
            self.annot_path = os.path.join(
                self.data_dir, 'annotations',
                'image_info_test-dev2017.json').format(split)
        else:
            if opt.task == 'exdet':
                self.annot_path = os.path.join(
                    self.data_dir, 'annotations',
                    'instances_extreme_{}2017.json').format(split)
            else:
                self.annot_path = os.path.join(
                    self.data_dir, 'annotations',
                    'instances_{}2017.json').format(split)
        self.max_objs = 128
        self.class_name = [
            '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
            'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
            'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
            'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
            'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
            'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
            'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass',
            'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
            'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
            'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
            'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
            'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
            'scissors', 'teddy bear', 'hair drier', 'toothbrush']
        self._valid_ids = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
            14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 27, 28, 31, 32, 33, 34, 35, 36,
            37, 38, 39, 40, 41, 42, 43, 44, 46, 47,
            48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
            58, 59, 60, 61, 62, 63, 64, 65, 67, 70,
            72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
            82, 84, 85, 86, 87, 88, 89, 90]
        self.cat_ids = {v: i for i, v in enumerate(self._valid_ids)}
        self.voc_color = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32)
                          for v in range(1, self.num_classes + 1)]
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        # self.mean = np.array([0.485, 0.456, 0.406], np.float32).reshape(1, 1, 3)
        # self.std = np.array([0.229, 0.224, 0.225], np.float32).reshape(1, 1, 3)

        self.split = split
        self.opt = opt

        print('==> initializing coco 2017 {} data.'.format(split))
        self.coco = coco.COCO(self.annot_path)
        self.images = self.coco.getImgIds()
        self.num_samples = len(self.images)

        print('Loaded {} {} samples'.format(split, self.num_samples))

    def _to_float(self, x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        # import pdb; pdb.set_trace()
        detections = []
        for image_id in all_bboxes:
            for cls_ind in all_bboxes[image_id]:
                category_id = self._valid_ids[cls_ind - 1]
                for bbox in all_bboxes[image_id][cls_ind]:
                    bbox[2] -= bbox[0]
                    bbox[3] -= bbox[1]
                    score = bbox[4]
                    bbox_out = list(map(self._to_float, bbox[0:4]))

                    detection = {
                        "image_id": int(image_id),
                        "category_id": int(category_id),
                        "bbox": bbox_out,
                        "score": float("{:.2f}".format(score))
                    }
                    if len(bbox) > 5:
                        extreme_points = list(map(self._to_float, bbox[5:13]))
                        detection["extreme_points"] = extreme_points
                    detections.append(detection)
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(save_dir, "results.json")
        # detections  = self.convert_eval_format(results)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        coco_dets = self.coco.loadRes('{}/results.json'.format(save_dir))
        coco_eval = COCOeval(self.coco, coco_dets, "bbox")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()