centernet_tensorrt_engine.py 8.94 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import sys

import cv2
import numpy as np
import torch
import torch.nn as nn

# from config import cfg, update_config
from models.utils import _gather_feat, _tranpose_and_gather_feat
from tensorrt_model import TRTModel
from utils.image import get_affine_transform, transform_preds


class CenterNetTensorRTEngine(object):
    def __init__(self, config, weight_file):

        # update_config(cfg, config_file)
        self.cfg = config
        self.trtmodel = TRTModel(weight_file)

    def preprocess(self, image, scale=1, meta=None):
        height, width = image.shape[0:2]
        new_height = int(height * scale)
        new_width  = int(width * scale)
        self.mean = np.array(self.cfg.mean, dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array(self.cfg.std, dtype=np.float32).reshape(1, 1, 3)
        if self.cfg.fix_res:
            inp_height, inp_width = self.cfg.input_h, self.cfg.input_w
            c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
            s = max(height, width) * 1.0
        else:
            inp_height = (new_height | self.cfg.pad) + 1
            inp_width = (new_width | self.cfg.pad) + 1
            c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
            s = np.array([inp_width, inp_height], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
        resized_image = cv2.resize(image, (new_width, new_height))
        inp_image = cv2.warpAffine(
            resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR)
        inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32)

        images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
        if self.cfg.flip_test:
            images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)

        meta = {'c': c, 's': s,
                'out_height': inp_height // self.cfg.down_ratio,
                'out_width': inp_width // self.cfg.down_ratio}

        return np.ascontiguousarray(images), meta

    def run(self, imgs):

        images , meta = self.preprocess(imgs)                       # prepocess for image
        trt_output = self.trtmodel(images)                          # tensorrt inference
        predictions = self.postprocess(trt_output, meta)
        return predictions


    def _nms(self, heat, kernel=3):
        pad = (kernel - 1) // 2

        hmax = nn.functional.max_pool2d(
            heat, (kernel, kernel), stride=1, padding=pad)
        keep = (hmax == heat).float()
        return heat * keep

    def _topk(self, scores, K=40):
        batch, cat, height, width = scores.size()
          
        topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)

        topk_inds = topk_inds % (height * width)
        topk_ys   = (topk_inds / width).int().float()
        topk_xs   = (topk_inds % width).int().float()
          
        topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K)
        topk_clses = (topk_ind / K).int()
        topk_inds = _gather_feat(
            topk_inds.view(batch, -1, 1), topk_ind).view(batch, K)
        topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K)
        topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
 
    def _topk_channel(self, scores, K=40):
          batch, cat, height, width = scores.size()
          
          topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)

          topk_inds = topk_inds % (height * width)
          topk_ys   = (topk_inds / width).int().float()
          topk_xs   = (topk_inds % width).int().float()

          return topk_scores, topk_inds, topk_ys, topk_xs
                    
    def multi_pose_decode(self,
        heat, wh, kps, reg=None, hm_hp=None, hp_offset=None, K=100):
        batch, cat, height, width = heat.size()
        num_joints = kps.shape[1] // 2
        # perform nms on heatmaps
        heat = self._nms(heat)
        scores, inds, clses, ys, xs = self._topk(heat, K=K)

        kps = _tranpose_and_gather_feat(kps, inds)
        kps = kps.view(batch, K, num_joints * 2)
        kps[..., ::2] += xs.view(batch, K, 1).expand(batch, K, num_joints)
        kps[..., 1::2] += ys.view(batch, K, 1).expand(batch, K, num_joints)
        if reg is not None:
            reg = _tranpose_and_gather_feat(reg, inds)
            reg = reg.view(batch, K, 2)
            xs = xs.view(batch, K, 1) + reg[:, :, 0:1]
            ys = ys.view(batch, K, 1) + reg[:, :, 1:2]
        else:
            xs = xs.view(batch, K, 1) + 0.5
            ys = ys.view(batch, K, 1) + 0.5
        wh = _tranpose_and_gather_feat(wh, inds)
        wh = wh.view(batch, K, 2)
        clses  = clses.view(batch, K, 1).float()
        scores = scores.view(batch, K, 1)

        bboxes = torch.cat([xs - wh[..., 0:1] / 2, 
                          ys - wh[..., 1:2] / 2,
                          xs + wh[..., 0:1] / 2, 
                          ys + wh[..., 1:2] / 2], dim=2)
        if hm_hp is not None:
            hm_hp = self._nms(hm_hp)
            thresh = 0.1
            kps = kps.view(batch, K, num_joints, 2).permute(
              0, 2, 1, 3).contiguous() # b x J x K x 2
            reg_kps = kps.unsqueeze(3).expand(batch, num_joints, K, K, 2)
            hm_score, hm_inds, hm_ys, hm_xs = self._topk_channel(hm_hp, K=K) # b x J x K
            if hp_offset is not None:
                hp_offset = _tranpose_and_gather_feat(
                  hp_offset, hm_inds.view(batch, -1))
                hp_offset = hp_offset.view(batch, num_joints, K, 2)
                hm_xs = hm_xs + hp_offset[:, :, :, 0]
                hm_ys = hm_ys + hp_offset[:, :, :, 1]
            else:
                hm_xs = hm_xs + 0.5
                hm_ys = hm_ys + 0.5

            mask = (hm_score > thresh).float()
            hm_score = (1 - mask) * -1 + mask * hm_score
            hm_ys = (1 - mask) * (-10000) + mask * hm_ys
            hm_xs = (1 - mask) * (-10000) + mask * hm_xs
            hm_kps = torch.stack([hm_xs, hm_ys], dim=-1).unsqueeze(
              2).expand(batch, num_joints, K, K, 2)
            dist = (((reg_kps - hm_kps) ** 2).sum(dim=4) ** 0.5)
            min_dist, min_ind = dist.min(dim=3) # b x J x K
            hm_score = hm_score.gather(2, min_ind).unsqueeze(-1) # b x J x K x 1
            min_dist = min_dist.unsqueeze(-1)
            min_ind = min_ind.view(batch, num_joints, K, 1, 1).expand(
              batch, num_joints, K, 1, 2)
            hm_kps = hm_kps.gather(3, min_ind)
            hm_kps = hm_kps.view(batch, num_joints, K, 2)
            l = bboxes[:, :, 0].view(batch, 1, K, 1).expand(batch, num_joints, K, 1)
            t = bboxes[:, :, 1].view(batch, 1, K, 1).expand(batch, num_joints, K, 1)
            r = bboxes[:, :, 2].view(batch, 1, K, 1).expand(batch, num_joints, K, 1)
            b = bboxes[:, :, 3].view(batch, 1, K, 1).expand(batch, num_joints, K, 1)
            mask = (hm_kps[..., 0:1] < l) + (hm_kps[..., 0:1] > r) + \
                 (hm_kps[..., 1:2] < t) + (hm_kps[..., 1:2] > b) + \
                 (hm_score < thresh) + (min_dist > (torch.max(b - t, r - l) * 0.3))
            mask = (mask > 0).float().expand(batch, num_joints, K, 2)
            kps = (1 - mask) * hm_kps + mask * kps
            kps = kps.permute(0, 2, 1, 3).contiguous().view(
              batch, K, num_joints * 2)
        detections = torch.cat([bboxes, scores, kps, torch.transpose(hm_score.squeeze(dim=3), 1, 2)], dim=2)
        return detections
        
    def multi_pose_post_process(self, dets, c, s, h, w):
        # dets: batch x max_dets x 40
        # return list of 39 in image coord
        ret = []
        for i in range(dets.shape[0]):
            bbox = transform_preds(dets[i, :, :4].reshape(-1, 2), c[i], s[i], (w, h))
            pts = transform_preds(dets[i, :, 5:15].reshape(-1, 2), c[i], s[i], (w, h))
            top_preds = np.concatenate(
                [bbox.reshape(-1, 4), dets[i, :, 4:5], 
                pts.reshape(-1, 10), dets[i, :, 15:20]], axis=1).astype(np.float32).tolist()
            ret.append({np.ones(1, dtype=np.int32)[0]: top_preds})
        return ret
            
    def post_process(self, dets, meta, scale=1):
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
        dets = self.multi_pose_post_process(
          dets.copy(), [meta['c']], [meta['s']],
          meta['out_height'], meta['out_width'])
        for j in range(1, self.cfg.num_classes + 1):
            dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 20)
            dets[0][j][:, :4] /= scale
            dets[0][j][:, 5:] /= scale
        return dets[0]
                
    def postprocess(self, *args):
        hm, wh, hps, reg, hm_hp, hp_offset = args[0]; meta = args[1]
        hm = hm.sigmoid_()
        hm_hp = hm_hp.sigmoid_()
        detections = self.multi_pose_decode(hm, wh, hps, reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=self.cfg.K)
        dets = self.post_process(detections, meta, 1)
        return dets