losses.py 8.73 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# ------------------------------------------------------------------------------
# Portions of this code are from
# CornerNet (https://github.com/princeton-vl/CornerNet)
# Copyright (c) 2018, University of Michigan
# Licensed under the BSD 3-Clause License
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
from .utils import _tranpose_and_gather_feat
import torch.nn.functional as F


def _slow_neg_loss(pred, gt):
chenych's avatar
chenych committed
18
19
20
    '''focal loss from CornerNet'''
    pos_inds = gt.eq(1)
    neg_inds = gt.lt(1)
chenych's avatar
chenych committed
21

chenych's avatar
chenych committed
22
    neg_weights = torch.pow(1 - gt[neg_inds], 4)
chenych's avatar
chenych committed
23

chenych's avatar
chenych committed
24
25
26
    loss = 0
    pos_pred = pred[pos_inds]
    neg_pred = pred[neg_inds]
chenych's avatar
chenych committed
27

chenych's avatar
chenych committed
28
29
    pos_loss = torch.log(pos_pred) * torch.pow(1 - pos_pred, 2)
    neg_loss = torch.log(1 - neg_pred) * torch.pow(neg_pred, 2) * neg_weights
chenych's avatar
chenych committed
30

chenych's avatar
chenych committed
31
32
33
    num_pos = pos_inds.float().sum()
    pos_loss = pos_loss.sum()
    neg_loss = neg_loss.sum()
chenych's avatar
chenych committed
34

chenych's avatar
chenych committed
35
36
37
38
39
    if pos_pred.nelement() == 0:
        loss = loss - neg_loss
    else:
        loss = loss - (pos_loss + neg_loss) / num_pos
    return loss
chenych's avatar
chenych committed
40
41
42


def _neg_loss(pred, gt):
chenych's avatar
chenych committed
43
44
45
46
47
48
49
50
51
52
    ''' Modified focal loss. Exactly the same as CornerNet.
        Runs faster and costs a little bit more memory
      Arguments:
        pred (batch x c x h x w)
        gt_regr (batch x c x h x w)
    '''
    pos_inds = gt.eq(1).float()
    neg_inds = gt.lt(1).float()

    neg_weights = torch.pow(1 - gt, 4)
chenych's avatar
chenych committed
53

chenych's avatar
chenych committed
54
    loss = 0
chenych's avatar
chenych committed
55

chenych's avatar
chenych committed
56
57
58
    pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
    neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * \
        neg_weights * neg_inds
chenych's avatar
chenych committed
59

chenych's avatar
chenych committed
60
61
62
    num_pos = pos_inds.float().sum()
    pos_loss = pos_loss.sum()
    neg_loss = neg_loss.sum()
chenych's avatar
chenych committed
63

chenych's avatar
chenych committed
64
65
66
67
68
    if num_pos == 0:
        loss = loss - neg_loss
    else:
        loss = loss - (pos_loss + neg_loss) / num_pos
    return loss
chenych's avatar
chenych committed
69
70
71
72
73


def _not_faster_neg_loss(pred, gt):
    pos_inds = gt.eq(1).float()
    neg_inds = gt.lt(1).float()
chenych's avatar
chenych committed
74
    num_pos = pos_inds.float().sum()
chenych's avatar
chenych committed
75
76
77
78
79
80
81
82
83
84
    neg_weights = torch.pow(1 - gt, 4)

    loss = 0
    trans_pred = pred * neg_inds + (1 - pred) * pos_inds
    weight = neg_weights * neg_inds + pos_inds
    all_loss = torch.log(1 - trans_pred) * torch.pow(trans_pred, 2) * weight
    all_loss = all_loss.sum()

    if num_pos > 0:
        all_loss /= num_pos
chenych's avatar
chenych committed
85
    loss -= all_loss
chenych's avatar
chenych committed
86
87
    return loss

chenych's avatar
chenych committed
88

chenych's avatar
chenych committed
89
def _slow_reg_loss(regr, gt_regr, mask):
chenych's avatar
chenych committed
90
    num = mask.float().sum()
chenych's avatar
chenych committed
91
92
    mask = mask.unsqueeze(2).expand_as(gt_regr)

chenych's avatar
chenych committed
93
    regr = regr[mask]
chenych's avatar
chenych committed
94
95
96
97
98
99
    gt_regr = gt_regr[mask]
    # regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)
    regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, reduction='sum')
    regr_loss = regr_loss / (num + 1e-4)
    return regr_loss

chenych's avatar
chenych committed
100

chenych's avatar
chenych committed
101
def _reg_loss(regr, gt_regr, mask, wight_=None):
chenych's avatar
chenych committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    ''' L1 regression loss
      Arguments:
        regr (batch x max_objects x dim)
        gt_regr (batch x max_objects x dim)
        mask (batch x max_objects)
    '''
    num = mask.float().sum()
    mask = mask.unsqueeze(2).expand_as(gt_regr).float()

    regr = regr * mask
    gt_regr = gt_regr * mask

    if wight_ is not None:
        wight_ = wight_.unsqueeze(2).expand_as(gt_regr).float()
        # regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, reduce=False)
        regr_loss = nn.functional.smooth_l1_loss(
            regr, gt_regr, reduction='none')
        regr_loss *= wight_
        regr_loss = regr_loss.sum()
    else:
        regr_loss = nn.functional.smooth_l1_loss(
            regr, gt_regr, reduction='sum')
        # regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)

    regr_loss = regr_loss / (num + 1e-4)
    return regr_loss

chenych's avatar
chenych committed
129
130

class FocalLoss(nn.Module):
chenych's avatar
chenych committed
131
132
133
134
135
136
137
138
    '''nn.Module warpper for focal loss'''

    def __init__(self):
        super(FocalLoss, self).__init__()
        self.neg_loss = _neg_loss

    def forward(self, out, target):
        return self.neg_loss(out, target)
chenych's avatar
chenych committed
139
140
141


class RegLoss(nn.Module):
chenych's avatar
chenych committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    '''Regression loss for an output tensor
      Arguments:
        output (batch x dim x h x w)
        mask (batch x max_objects)
        ind (batch x max_objects)
        target (batch x max_objects x dim)
    '''

    def __init__(self):
        super(RegLoss, self).__init__()

    def forward(self, output, mask, ind, target, wight_=None):
        pred = _tranpose_and_gather_feat(output, ind)
        loss = _reg_loss(pred, target, mask, wight_)
        return loss

chenych's avatar
chenych committed
158
159

class RegL1Loss(nn.Module):
chenych's avatar
chenych committed
160
161
162
163
164
165
166
167
168
169
170
171
    def __init__(self):
        super(RegL1Loss, self).__init__()

    def forward(self, output, mask, ind, target):
        pred = _tranpose_and_gather_feat(output, ind)
        mask = mask.unsqueeze(2).expand_as(pred).float()
        # loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
        loss = F.l1_loss(pred * mask, target * mask, reduction='sum')
        # loss = F.l1_loss(pred * mask, target * mask, size_average=False)
        loss = loss / (mask.sum() + 1e-4)
        return loss

chenych's avatar
chenych committed
172
173

class NormRegL1Loss(nn.Module):
chenych's avatar
chenych committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def __init__(self):
        super(NormRegL1Loss, self).__init__()

    def forward(self, output, mask, ind, target):
        pred = _tranpose_and_gather_feat(output, ind)
        mask = mask.unsqueeze(2).expand_as(pred).float()
        # loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')

        pred = pred / (target + 1e-4)
        target = target * 0 + 1
        loss = F.l1_loss(pred * mask, target * mask, reduction='sum')
        # loss = F.l1_loss(pred * mask, target * mask, size_average=False)
        loss = loss / (mask.sum() + 1e-4)
        return loss

chenych's avatar
chenych committed
189
190

class RegWeightedL1Loss(nn.Module):
chenych's avatar
chenych committed
191
192
193
194
195
196
197
198
199
200
201
202
    def __init__(self):
        super(RegWeightedL1Loss, self).__init__()

    def forward(self, output, mask, ind, target):
        pred = _tranpose_and_gather_feat(output, ind)
        mask = mask.float()
        # loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
        loss = F.l1_loss(pred * mask, target * mask, reduction='sum')
        # loss = F.l1_loss(pred * mask, target * mask, size_average=False)
        loss = loss / (mask.sum() + 1e-4)
        return loss

chenych's avatar
chenych committed
203
204

class L1Loss(nn.Module):
chenych's avatar
chenych committed
205
206
207
208
209
210
211
212
213
    def __init__(self):
        super(L1Loss, self).__init__()

    def forward(self, output, mask, ind, target):
        pred = _tranpose_and_gather_feat(output, ind)
        mask = mask.unsqueeze(2).expand_as(pred).float()
        loss = F.l1_loss(pred * mask, target * mask,
                         reduction='elementwise_mean')
        return loss
chenych's avatar
chenych committed
214
215
216


class BinRotLoss(nn.Module):
chenych's avatar
chenych committed
217
218
219
220
221
222
223
    def __init__(self):
        super(BinRotLoss, self).__init__()

    def forward(self, output, mask, ind, rotbin, rotres):
        pred = _tranpose_and_gather_feat(output, ind)
        loss = compute_rot_loss(pred, rotbin, rotres, mask)
        return loss
chenych's avatar
chenych committed
224
225
226
227
228
229


def compute_res_loss(output, target):
    return F.smooth_l1_loss(output, target, reduction='elementwise_mean')

# TODO: weight
chenych's avatar
chenych committed
230
231


chenych's avatar
chenych committed
232
233
234
235
236
def compute_bin_loss(output, target, mask):
    mask = mask.expand_as(output)
    output = output * mask.float()
    return F.cross_entropy(output, target, reduction='elementwise_mean')

chenych's avatar
chenych committed
237

chenych's avatar
chenych committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def compute_rot_loss(output, target_bin, target_res, mask):
    # output: (B, 128, 8) [bin1_cls[0], bin1_cls[1], bin1_sin, bin1_cos,
    #                 bin2_cls[0], bin2_cls[1], bin2_sin, bin2_cos]
    # target_bin: (B, 128, 2) [bin1_cls, bin2_cls]
    # target_res: (B, 128, 2) [bin1_res, bin2_res]
    # mask: (B, 128, 1)
    # import pdb; pdb.set_trace()
    output = output.view(-1, 8)
    target_bin = target_bin.view(-1, 2)
    target_res = target_res.view(-1, 2)
    mask = mask.view(-1, 1)
    loss_bin1 = compute_bin_loss(output[:, 0:2], target_bin[:, 0], mask)
    loss_bin2 = compute_bin_loss(output[:, 4:6], target_bin[:, 1], mask)
    loss_res = torch.zeros_like(loss_bin1)
    if target_bin[:, 0].nonzero().shape[0] > 0:
        idx1 = target_bin[:, 0].nonzero()[:, 0]
        valid_output1 = torch.index_select(output, 0, idx1.long())
        valid_target_res1 = torch.index_select(target_res, 0, idx1.long())
        loss_sin1 = compute_res_loss(
chenych's avatar
chenych committed
257
            valid_output1[:, 2], torch.sin(valid_target_res1[:, 0]))
chenych's avatar
chenych committed
258
        loss_cos1 = compute_res_loss(
chenych's avatar
chenych committed
259
            valid_output1[:, 3], torch.cos(valid_target_res1[:, 0]))
chenych's avatar
chenych committed
260
261
262
263
264
265
        loss_res += loss_sin1 + loss_cos1
    if target_bin[:, 1].nonzero().shape[0] > 0:
        idx2 = target_bin[:, 1].nonzero()[:, 0]
        valid_output2 = torch.index_select(output, 0, idx2.long())
        valid_target_res2 = torch.index_select(target_res, 0, idx2.long())
        loss_sin2 = compute_res_loss(
chenych's avatar
chenych committed
266
            valid_output2[:, 6], torch.sin(valid_target_res2[:, 1]))
chenych's avatar
chenych committed
267
        loss_cos2 = compute_res_loss(
chenych's avatar
chenych committed
268
            valid_output2[:, 7], torch.cos(valid_target_res2[:, 1]))
chenych's avatar
chenych committed
269
270
        loss_res += loss_sin2 + loss_cos2
    return loss_bin1 + loss_bin2 + loss_res