train.py 8.74 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import random
import torch.nn.functional as F

from torch.optim import AdamW
from accelerate import Accelerator
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from tqdm import tqdm
from typing import Optional
from torch.utils.data import DataLoader
from torchvision.utils import save_image

from model.attn_processor import SkipAttnProcessor
from model.utils import init_adapter
from args import get_args
from data.vitonhd import VITHONHD
from utils import prepare_image, prepare_mask_image, compute_vae_encodings, compute_dream_and_update_latents_for_inpaint
from model.pipeline import CatVTONPipeline


def init_models(model_root: str,
                weight_dtype: str = "no",
                vae_subfolder: str = "vae",
                device = "cpu"):
    if weight_dtype == "no":
        weight_dtype = torch.float32
    elif weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif weight_dtype == "bf16":
        weight_dtype = torch.bfloat16
    else:
        raise NotImplemented

    print(f"load vae from {vae_subfolder}")
    vae = AutoencoderKL.from_pretrained(model_root, subfolder=vae_subfolder)
    unet = UNet2DConditionModel.from_pretrained(model_root, subfolder="unet")
    try:
        noise_scheduler = DDIMScheduler.from_pretrained(model_root, subfolder="scheduler")
    except Exception as e:
        noise_scheduler = DDIMScheduler.from_pretrained(model_root, subfolder="noise_scheduler")

    init_adapter(unet, cross_attn_cls=SkipAttnProcessor)
    
    vae.to(device)
    unet.to(device)

    vae.requires_grad_(False)
    unet.requires_grad_(False)

    for name, param in unet.named_modules():
        if "attn1" in name:
            param.requires_grad_(True)

    unet.train()
    # unet.enable_gradient_checkpointing()

    optimizer_path = os.path.join(model_root, "optim.pth")
    if os.path.exists(optimizer_path):
        optimizer_state_dict = torch.load(optimizer_path)
    else:
        optimizer_state_dict = None

    return noise_scheduler, vae, unet, optimizer_state_dict


def train_one_step(batch,
                   noise_scheduler,
                   vae,
                   unet,
                   device,
                   extra_condition_key):
    person = prepare_image(batch['person'])
    cloth = prepare_image(batch['cloth'])
    mask = prepare_mask_image(batch['mask'])

    masked_person = person * (mask < 0.5)

    person_latent = compute_vae_encodings(person, vae)  # 加噪
    masked_person_latent = compute_vae_encodings(masked_person, vae)

    if random.random() < 0.15:
        # for cfg
        cloth_latent = torch.zeros_like(masked_person_latent).to(device).to(masked_person_latent.dtype)
    else:
        cloth_latent = compute_vae_encodings(cloth, vae)

    mask_latent = F.interpolate(mask, size=masked_person_latent.shape[-2:], mode="nearest")

    bsz = masked_person_latent.shape[0]

    timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz, )).to(device).long()
    
    first_input_latent = torch.concat([person_latent, cloth_latent], dim=-2)

    noise = torch.randn_like(first_input_latent)

    noisy_first_latent = noise_scheduler.add_noise(first_input_latent, noise, timesteps)

    masked_latent_concat = torch.cat([masked_person_latent, cloth_latent], dim=-2)

    extra_condition = batch.get(extra_condition_key, None)
    extra_condition = F.interpolate(extra_condition, size=mask_latent.shape[-2:], mode="nearest")

    mask_latent_concat = torch.cat([mask_latent, extra_condition], dim=-2)


    inpainting_latent_model_input = torch.cat([noisy_first_latent, mask_latent_concat, masked_latent_concat], dim=1)

    noise_pred = unet(
        inpainting_latent_model_input,
        timesteps,
        encoder_hidden_states=None,
        return_dict=False
    )[0]

    loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")

    return loss


def main():
    args = get_args()

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.weight_dtype
    )

    device = accelerator.device

    train_dataset = VITHONHD(args.train_data_record_path, args.height, args.width, extra_condition_key=args.extra_condition_key)
    train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)

    noise_scheduler, vae, unet, optimizer_state_dict = init_models(args.model_root, device=device, vae_subfolder=args.vae_subfolder)
    optimizer = AdamW(unet.parameters(), lr=args.lr, betas=(args.beta1, args.beta2), eps=args.eps, weight_decay=args.weight_decay)
    if optimizer_state_dict:
        print("加载优化器状态")
        optimizer.load_state_dict(optimizer_state_dict)

    if accelerator.is_main_process:
        eval_dataset = VITHONHD(args.eval_data_record_path, args.height, args.width, is_train=False, extra_condition_key=args.extra_condition_key)
        eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1, num_workers=args.num_workers)
    else:
        eval_dataloader = None

    (
        unet,
        optimizer,
        train_dataloader
    ) = accelerator.prepare(
        unet,
        optimizer,
        train_dataloader
    )

    global_step = args.global_steps
    reach_max_steps = False

    progress_bar = tqdm(initial=global_step, total=args.max_steps, disable=not accelerator.is_main_process)
    progress_bar.set_description("train catvton")

    while True:
        if reach_max_steps:
            print("到达最大训练步数,停止训练")
            break
        avg_loss = 0.
        for batch in train_dataloader:
            with accelerator.accumulate(unet):
                with accelerator.autocast():
                    loss = train_one_step(
                        batch,
                        noise_scheduler,
                        vae,
                        unet,
                        device,
                        args.extra_condition_key
                    )

                avg_loss += loss.item()

                accelerator.backward(loss)

                # TODO: 需要关注
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)

                optimizer.step()
                optimizer.zero_grad()
                
            if accelerator.sync_gradients:
                avg_loss = torch.tensor(avg_loss).to(device)
                avg_loss = accelerator.gather(avg_loss).mean().item() / accelerator.gradient_accumulation_steps
                progress_bar.update(1)
                logs = {"step_loss": avg_loss, "global_steps": global_step}
                progress_bar.set_postfix(**logs)

                global_step += 1
                avg_loss = 0.

                # 验证并保存模型
                if global_step % args.logging_steps == 0 or global_step >= args.max_steps:
                    if accelerator.is_main_process:
                        unwrap_unet = accelerator.unwrap_model(unet)
                        unwrap_unet.eval()
                        pipeline = CatVTONPipeline(noise_scheduler, vae, unwrap_unet)
                        
                        os.makedirs(f"../eval_outputs/{args.eval_output_dir}/{global_step}", exist_ok=True)
                        
                        with torch.no_grad():
                            for idx, batch in enumerate(eval_dataloader):
                                if args.extra_condition_key:
                                    sample = pipeline(
                                        image=batch['person'],
                                        condition_image=batch['cloth'],
                                        mask=batch['mask'],
                                        extra_condition=batch[args.extra_condition_key]
                                    )[0]
                                else:
                                    sample = pipeline(
                                        image=batch['person'],
                                        condition_image=batch['cloth'],
                                        mask=batch['mask']
                                    )[0]

                                sample.save(f"../eval_outputs/{args.eval_output_dir}/{global_step}/{idx}.png")

                        save_path = os.path.join(args.output_dir, args.checkpoint_dir)
                        pipeline.save_pretrained(save_path)
                        torch.save(optimizer.state_dict(), f"{save_path}/optim.pth")

                        del pipeline
                        del unwrap_unet
                        torch.cuda.empty_cache()
                        
                    if global_step >= args.max_steps:
                        reach_max_steps = True
                        break


if __name__ == "__main__":
    main()