pipeline.py 6.78 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import inspect
import os
from typing import Union

import PIL
import numpy as np
import torch
import tqdm
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline

from model.utils import get_trainable_module, init_adapter
from utils import (compute_vae_encodings, numpy_to_pil, prepare_image,
                   prepare_mask_image, resize_and_crop, resize_and_padding)

import torch.nn.functional as F


class CatVTONPipeline(DiffusionPipeline):
    
    def __init__(
        self, 
        noise_scheduler,
        vae,
        unet,
    ):
        self.register_modules(
            vae=vae,
            unet=unet,
            noise_scheduler=noise_scheduler
        )
        
        # self.vae.device = vae.device
        # self.vae.dtype = self.vae.dtype
    
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    @torch.no_grad()
    def __call__(
        self, 
        image: Union[PIL.Image.Image, torch.Tensor],
        condition_image: Union[PIL.Image.Image, torch.Tensor],
        mask: Union[PIL.Image.Image, torch.Tensor],
        extra_condition: None,
        num_inference_steps: int = 50,
        guidance_scale: float = 2.5,
        height: int = 1024,
        width: int = 768,
        generator=None,
        eta=1.0,
        **kwargs
    ):
        concat_dim = -2  # FIXME: y axis concat
        # Prepare inputs to Tensor
        image = prepare_image(image).to(self.vae.device, dtype=self.vae.dtype)
        condition_image = prepare_image(condition_image).to(self.vae.device, dtype=self.vae.dtype)
        mask = prepare_mask_image(mask).to(self.vae.device, dtype=self.vae.dtype)
        # Mask image
        masked_image = image * (mask < 0.5)
        # VAE encoding
        masked_latent = compute_vae_encodings(masked_image, self.vae)
        condition_latent = compute_vae_encodings(condition_image, self.vae)
        mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
        del image, mask, condition_image
        # Concatenate latents
        masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)
        
        # if extra_condition is not None:
        #     extra_condition = F.interpolate(extra_condition, size=mask_latent.shape[-2:], mode="nearest").to(self.vae.device, dtype=self.vae.dtype)
        # else:
        #     extra_condition = torch.zeros_like(mask_latent).to(self.vae.device, dtype=self.vae.dtype)
        extra_condition = F.interpolate(extra_condition, size=mask_latent.shape[-2:], mode="nearest").to(self.vae.device, dtype=self.vae.dtype)
        mask_latent_concat = torch.cat([mask_latent, extra_condition], dim=concat_dim)
        
        # Prepare noise
        latents = randn_tensor(
            masked_latent_concat.shape,
            generator=generator,
            device=masked_latent_concat.device,
            dtype=self.vae.dtype,
        )
        # Prepare timesteps
        self.noise_scheduler.set_timesteps(num_inference_steps, device=self.vae.device)
        timesteps = self.noise_scheduler.timesteps
        latents = latents * self.noise_scheduler.init_noise_sigma
        # Classifier-Free Guidance
        if do_classifier_free_guidance := (guidance_scale > 1.0):
            masked_latent_concat = torch.cat(
                [
                    torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
                    masked_latent_concat,
                ]
            )
            mask_latent_concat = torch.cat([mask_latent_concat] * 2)

        # Denoising loop
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
        with tqdm.tqdm(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
                non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t)
                # prepare the input for the inpainting model
                inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1)
                # predict the noise residual
                noise_pred= self.unet(
                    inpainting_latent_model_input,
                    t.to(self.vae.device),
                    encoder_hidden_states=None, # FIXME
                    return_dict=False,
                )[0]
                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.noise_scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps
                    and (i + 1) % self.noise_scheduler.order == 0
                ):
                    progress_bar.update()

        # Decode the final latents
        latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents.to(self.vae.device, dtype=self.vae.dtype)).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        image = numpy_to_pil(image)
        
        return image