test_scheduler.py 6.25 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import unittest
from unittest import TestCase

import numpy as np
import oneflow as flow
import oneflow.nn as nn

from libai.scheduler import (
    WarmupCosineLR,
    WarmupExponentialLR,
    WarmupMultiStepLR,
    WarmupPolynomialLR,
    WarmupStepLR,
)


# @unittest.skip("Bugs in warmup scheduler")
class TestScheduler(TestCase):
    def test_warmup_multistep(self):
        p = nn.Parameter(flow.zeros(0))
        opt = flow.optim.SGD([p], lr=5.0)

        sched = WarmupMultiStepLR(
            optimizer=opt,
            max_iter=10,
            milestones=[10, 15, 20],
            gamma=0.1,
            warmup_factor=0.001,
            warmup_iter=5,
            warmup_method="linear",
        )

        p.sum().backward()
        opt.step()

        lrs = [0.005]
        for _ in range(30):
            sched.step()
            lrs.append(opt.param_groups[0]["lr"])
        self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001]))
        self.assertTrue(np.allclose(lrs[5:10], 5.0))
        self.assertTrue(np.allclose(lrs[10:15], 0.5))
        self.assertTrue(np.allclose(lrs[15:20], 0.05))
        self.assertTrue(np.allclose(lrs[20:], 0.005))

    def test_warmup_step(self):
        p = nn.Parameter(flow.zeros(0))
        opt = flow.optim.SGD([p], lr=5.0)

        sched = WarmupStepLR(
            optimizer=opt,
            max_iter=10,
            step_size=10,
            gamma=0.1,
            warmup_factor=0.001,
            warmup_iter=5,
            warmup_method="linear",
        )

        p.sum().backward()
        opt.step()

        lrs = [0.005]
        for _ in range(30):
            sched.step()
            lrs.append(opt.param_groups[0]["lr"])
        self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001]))
        self.assertTrue(np.allclose(lrs[5:10], 5.0))
        self.assertTrue(np.allclose(lrs[10:20], 0.5))
        self.assertTrue(np.allclose(lrs[20:30], 0.05))
        self.assertTrue(np.allclose(lrs[30:], 0.005))

    def test_warmup_cosine(self):
        p = nn.Parameter(flow.zeros(0))
        opt = flow.optim.SGD([p], lr=5.0)

        sched = WarmupCosineLR(
            optimizer=opt,
            max_iter=30,
            warmup_factor=0.001,
            warmup_iter=5,
            warmup_method="linear",
        )

        p.sum().backward()
        opt.step()
        self.assertEqual(opt.param_groups[0]["lr"], 0.005)
        lrs = [0.005]

        for _ in range(30):
            sched.step()
            lrs.append(opt.param_groups[0]["lr"])
        for idx, lr in enumerate(lrs):
            expected_cosine = 2.5 * (1.0 + math.cos(math.pi * idx / 30))
            if idx >= 5:
                self.assertAlmostEqual(lr, expected_cosine)
            else:
                self.assertNotAlmostEqual(lr, expected_cosine)

    def test_warmup_exponential(self):
        p = nn.Parameter(flow.zeros(0))
        opt = flow.optim.SGD([p], lr=5.0)

        sched = WarmupExponentialLR(
            optimizer=opt,
            max_iter=10,
            gamma=0.1,
            warmup_factor=0.001,
            warmup_iter=5,
            warmup_method="linear",
        )

        p.sum().backward()
        opt.step()
        self.assertEqual(opt.param_groups[0]["lr"], 0.005)
        lrs = [0.005]

        def _get_exponential_lr(base_lr, gamma, max_iters, warmup_iters):
            valid_values = []
            for idx in range(warmup_iters, max_iters + 1):
                valid_values.append(base_lr * (gamma ** idx))
            return valid_values

        for _ in range(30):
            sched.step()
            lrs.append(opt.param_groups[0]["lr"])
        self.assertTrue(
            np.allclose(
                lrs[:5], [0.005, 0.00401, 0.0030199999999999997, 0.00203, 0.0010399999999999997]
            )
        )
        valid_intermediate_values = _get_exponential_lr(
            base_lr=5.0, gamma=0.1, max_iters=30, warmup_iters=5
        )
        self.assertEqual(lrs[5:], valid_intermediate_values)

    def test_warmup_polynomial(self):
        p = nn.Parameter(flow.zeros(0))
        opt = flow.optim.SGD([p], lr=5.0)

        sched = WarmupPolynomialLR(
            optimizer=opt,
            max_iter=30,
            warmup_factor=0.001,
            warmup_iter=0,
            end_learning_rate=1e-4,
            power=1.0,
            cycle=False,
            warmup_method="linear",
        )

        # self.assertEqual(opt.param_groups[0]["lr"], 0.005)
        # lrs = [0.005]
        lrs = [5.0]  # lr_scheduler first invoke result

        def _get_polynomial_lr(
            base_lr, max_iters, warmup_iters, end_lr=1e-4, power=1.0, cycle=False
        ):
            valid_values = []
            decay_steps = max_iters - warmup_iters
            for step in range(max_iters - warmup_iters):
                if cycle:
                    if step == 0:
                        step = 1
                    decay_steps = decay_steps * math.ceil(step / decay_steps)
                else:
                    step = min(step, decay_steps)
                valid_values.append(
                    (base_lr - end_lr) * ((1 - step / decay_steps) ** power) + end_lr
                )
            return valid_values

        for _ in range(29):
            sched.step()  # only invoke (max_iter-1), because the first invoke is done when init
            lrs.append(opt.param_groups[0]["lr"])
        # self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001]))
        valid_intermediate_values = _get_polynomial_lr(base_lr=5.0, max_iters=30, warmup_iters=0)
        # self.assertEqual(lrs[5:30], valid_intermediate_values)
        self.assertEqual(lrs, valid_intermediate_values)


if __name__ == "__main__":
    unittest.main()