tokenization_gpt2.py 9.5 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tokenization classes for OpenAI GPT (BPE)."""

import json
import logging
import os
from functools import lru_cache
from io import open
from typing import List, Optional

import regex as re

from .tokenization_base import PreTrainedTokenizer

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.json",
    "merges_file": "merges.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json"},
    "merges_file": {"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt"},
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "gpt2": 1024,
}


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping
    to whitespace/control characters the bpe code barfs on.

    The reversible bpe codes work on unicode strings. This means you need a large # of unicode
    characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token
    dataset you end up needing around 5K for decent coverage. This is a significant percentage
    of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8
    bytes and unicode strings.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1))
        + list(range(ord("¡"), ord("¬") + 1))
        + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2 ** 8):
        if b not in bs:
            bs.append(b)
            cs.append(2 ** 8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """
    Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


class GPT2Tokenizer(PreTrainedTokenizer):
    """
    Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.

    Args:
        vocab_file (:obj:`str`):
            Path to the vocabulary file.
        merges_file (:obj:`str`):
            Path to the merges file.
        errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
            Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
            <https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
        unk_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
            The unknown token. A token that is not in the vocabulary cannot be
            converted to an ID and is set to be this token instead.
        bos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
            The beginning of sequence token.
        eos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
            The end of sequence token.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(
        self,
        vocab_file,
        merges_file,
        errors="replace",
        unk_token="<|endoftext|>",
        bos_token="<|endoftext|>",
        eos_token="<|endoftext|>",
        add_bos_token=False,
        **kwargs,
    ):
        super(GPT2Tokenizer, self).__init__(
            bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
        )

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.errors = errors  # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding="utf-8").read().split("\n")[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for
        # capitalized versions of contractions
        self.pat = re.compile(
            r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
        )
        self.add_bos_token = add_bos_token

    @property
    def vocab_size(self):
        return len(self.encoder)

    def get_vocab(self):
        return dict(self.encoder, **self.added_tokens_encoder)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:  # noqa
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = " ".join(word)
        self.cache[token] = word
        return word

    def _tokenize(self, text):
        """Tokenize a string."""
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            # Maps all our bytes to unicode strings, avoiding control tokens
            # of the BPE (spaces in our case)
            token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
        return bpe_tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.decoder.get(index)

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) to a single string."""
        text = "".join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
        return text

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """Add special tokens to a sequence or a pair of sequence.
        GPT2 format sentence input:

        - single sequence: <|endoftext|> tokens_a
        - pair of sequences: <|endoftext|> tokens_a <|endoftext|> tokens_b

        Args:
            token_ids_0 (List[int]): The token ids of sentence 0.
            token_ids_1 (List[int], optional): The token ids of sentence 1. Defaults to None.

        Returns:
            :obj:`List[str]`: The sequence after adding special toekens.
        """
        if self.add_bos_token:
            bos = [self.bos_token_id]
        else:
            bos = []

        if token_ids_1 is None:
            return bos + token_ids_0

        return bos + token_ids_0 + bos + token_ids_1

    def save_vocabulary(self, save_directory, filename_prefix=None):
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
        )
        merge_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"],
        )

        with open(vocab_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write("#version: 0.2\n")
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
                        " Please check that the tokenizer is not corrupted!"
                    )
                    index = token_index
                writer.write(" ".join(bpe_tokens) + "\n")
                index += 1

        return (vocab_file, merge_file)