"vscode:/vscode.git/clone" did not exist on "3cf7f264f427f10b8b33ad1b8a4450aedf92693c"
tokenization_bert.py 19 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tokenization classes for bert (wordpieces)."""

import collections
import logging
import os
import re
import unicodedata
from io import open
from typing import List, Optional

from .tokenization_base import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
        "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
        "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
        "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
        "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "bert-base-uncased": 512,
    "bert-large-uncased": 512,
    "bert-base-cased": 512,
    "bert-large-cased": 512,
    "bert-base-chinese": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "bert-base-uncased": {"do_lower_case": True},
    "bert-large-uncased": {"do_lower_case": True},
    "bert-base-cased": {"do_lower_case": False},
    "bert-large-cased": {"do_lower_case": False},
    "bert-base-chinese": {"do_lower_case": False},
}


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


def _is_chinese_substr(char):
    return re.findall("##[\u4E00-\u9FA5]", char)


class BertTokenizer(PreTrainedTokenizer):
    """
    Construct a BERT tokenizer. Based on WordPiece.

    Args:
        vocab_file (:obj:`str`):
            Path to a one-wordpiece-per-line vocabulary file.
        do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to lower case the input.
            Only has an effect when do_basic_tokenize=True.
        do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to do basic tokenization before wordpiece.
        never_split (:obj:`Iterable`, `optional`):
            List of tokens which will never be split during tokenization.
            Only has an effect when do_basic_tokenize=True.
        tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to tokenize Chinese characters.
            This should likely be deactivated for Japanese,
            see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328.
        do_chinese_wwm (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to do whole word masking for Chinese.
            Chinese sentence will be segmented by a third-party tool first.
            Each substr will be added '##' prefix and its index will be calucated by
            id(##A) = id(A) + vocab_size.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        do_chinese_wwm=False,
        add_bos_token=False,
        **kwargs,
    ):
        super(BertTokenizer, self).__init__(
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            **kwargs,
        )
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the "
                "vocabulary from a Google pretrained model use "
                "`tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    vocab_file
                )
            )
        self.vocab = load_vocab(vocab_file)
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()]
        )
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
            if do_chinese_wwm:
                self.basic_tokenizer = BasicTokenizerWithChineseWWM(
                    do_lower_case=do_lower_case,
                    never_split=never_split,
                    tokenize_chinese_chars=tokenize_chinese_chars,
                )
            else:
                self.basic_tokenizer = BasicTokenizer(
                    do_lower_case=do_lower_case,
                    never_split=never_split,
                    tokenize_chinese_chars=tokenize_chinese_chars,
                )
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
        self.add_bos_token = add_bos_token

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return dict(self.vocab, **self.added_tokens_encoder)

    def _tokenize(self, text):
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab.
        For Chinese substr, id = vocab_size + id(substr.remove(##)).
        """
        index = self.vocab.get(token, self.vocab.get(self.unk_token))
        return index

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab.
        For Chinese substr, id = vocab_size + id(substr.remove(##)).
        """
        token = self.ids_to_tokens.get(index, self.unk_token)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) to a single string."""
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """Add special tokens to a sequence or a pair of sequence.
        BERT format sentence input:

        - single sequence: [CLS] tokens_a [SEP]
        - pair of sequences: [CLS] tokens_a [SEP] tokens_b [SEP]

        Args:
            token_ids_0 (List[int]): The token ids of sentence 0.
            token_ids_1 (List[int], optional): The token ids of sentence 1. Defaults to None.

        Returns:
            :obj:`List[str]`: The sequence after adding special toekens.
        """
        if self.add_bos_token:
            cls = [self.cls_token_id]
            sep = [self.sep_token_id]
        else:
            cls = []
            sep = []

        if token_ids_1 is None:
            return cls + token_ids_0 + sep

        return cls + token_ids_0 + sep + token_ids_1 + sep

    def save_vocabulary(self, save_directory, filename_prefix=None):
        """Save the tokenizer vocabulary to a directory or file."""
        index = 0
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory,
                (filename_prefix + "-" if filename_prefix else "")
                + VOCAB_FILES_NAMES["vocab_file"],
            )
        else:
            vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        "Saving vocabulary to {}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!".format(vocab_file)
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1
        return (vocab_file,)


class BasicTokenizer(object):
    """
    Constructs a BasicTokenizer that will run basic
    tokenization (punctuation splitting, lower casing, etc.).
    """

    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
        """Constructs a BasicTokenizer.
        Args:
            **do_lower_case**: Whether to lower case the input.
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level
                (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
            **tokenize_chinese_chars**: (`optional`) boolean (default True)
                Whether to tokenize Chinese characters.
                This should likely be deactivated for Japanese:
                see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
        """
        if never_split is None:
            never_split = []
        self.do_lower_case = do_lower_case
        self.never_split = set(never_split)
        self.tokenize_chinese_chars = tokenize_chinese_chars

    def tokenize(self, text, never_split=None):
        """
        Basic Tokenization of a piece of text.
        Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer.

        Args:
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level
                (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
        """
        # union() returns a new set by concatenating the two sets.
        never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        if self.tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if self.do_lower_case and token not in never_split:
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token, never_split))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text, never_split=None):
        """Splits punctuation on a piece of text."""
        if never_split is not None and text in never_split:
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xFFFD or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class BasicTokenizerWithChineseWWM(BasicTokenizer):
    """Pre-segmentation for Chinese sentences, which will be used in whole word mask."""

    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
        super(BasicTokenizerWithChineseWWM, self).__init__(
            do_lower_case=do_lower_case,
            never_split=never_split,
            tokenize_chinese_chars=tokenize_chinese_chars,
        )
        try:
            import jieba

            self.pre_tokenizer = lambda x: jieba.lcut(x, HMM=False)
        except ImportError:
            raise (ImportError("Chinese whole word mask need jieba"))

    def _tokenize_chinese_chars(self, text):
        """For Chinese pieces, uses jieba to segment the words and
        adds whitespace around CJK character."""
        output = []
        piece = ""
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                piece += char
            else:
                chinese_words = self.pre_tokenizer(piece)
                for word in chinese_words:
                    output.append(" ")
                    output.append(word)
                    output.append(" ")
                output.append(char)
                piece = ""

        chinese_words = self.pre_tokenizer(piece)
        for word in chinese_words:
            output.append(" ")
            output.append(word)
            output.append(" ")

        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.
        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.
        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

          input = "有没有"
          output = ["有", "##没", "##有"]
        Args:
          text: A single token or whitespace separated tokens. This should have
            already been passed through `BasicTokenizer`.
        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr

                    if substr.startswith("##"):
                        if _is_chinese_substr(substr):
                            if substr[2:] in self.vocab:  # for Chinese substr
                                cur_substr = substr
                                break
                        else:
                            if substr in self.vocab:  # for English substr
                                cur_substr = substr
                                break
                    else:
                        if (
                            substr in self.vocab
                        ):  # non-substr, maybe character or whole Chinese word
                            cur_substr = substr
                            break
                    end -= 1

                if cur_substr is None:
                    is_bad = True
                    break

                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens