t5_to_onnx.py 3.5 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import oneflow as flow
from oneflow import nn
from oneflow_onnx.oneflow2onnx.util import convert_to_onnx_and_check

from libai.config import LazyConfig
from projects.MT5.mt5_model import MT5Model
from projects.MT5.utils.mt5_loader import T5LoaderHuggerFace


def get_model(config_file):
    cfg = LazyConfig.load(config_file)

    cfg.model.cfg.model_type = "mt5"
    cfg.model.cfg.pretrained_model_path = None
    cfg.dataloader = None
    cfg.tokenization = None

    print("Building model....")
    loader = T5LoaderHuggerFace(MT5Model, cfg.model.cfg, "/path/to/model")
    model = loader.load()
    print("Build model finished.")

    return model


class t5Graph(nn.Graph):
    def __init__(self, eager_model):
        super().__init__()
        self.model = eager_model

    def build(
        self,
        encoder_input_ids,
        encoder_attn_mask,
        decoder_input_ids,
        decoder_attn_mask,
        encoder_decoder_attn_mask,
    ):
        out = self.model(
            encoder_input_ids,
            encoder_attn_mask,
            decoder_input_ids,
            decoder_attn_mask,
            encoder_decoder_attn_mask,
        )
        return out


if __name__ == "__main__":
    model = get_model("projects/MT5/configs/mt5_pretrain.py")
    model.eval()

    t5_graph = t5Graph(model)
    # Build the static graph model
    encoder_input_ids = flow.ones(
        1, 5, dtype=flow.int64, sbp=flow.sbp.broadcast, placement=flow.placement("cuda", ranks=[0])
    )
    encoder_attn_mask = flow.ones(
        1, 3, dtype=flow.int64, sbp=flow.sbp.broadcast, placement=flow.placement("cuda", ranks=[0])
    )
    decoder_input_ids = flow.ones(
        1,
        5,
        5,
        dtype=flow.bool,
        sbp=flow.sbp.broadcast,
        placement=flow.placement("cuda", ranks=[0]),
    )
    decoder_attn_mask = flow.ones(
        1,
        3,
        3,
        dtype=flow.bool,
        sbp=flow.sbp.broadcast,
        placement=flow.placement("cuda", ranks=[0]),
    )
    encoder_decoder_attn_mask = flow.ones(
        1,
        3,
        5,
        dtype=flow.bool,
        sbp=flow.sbp.broadcast,
        placement=flow.placement("cuda", ranks=[0]),
    )

    # check your model.forward is valid
    # output = t5_graph(
    #     encoder_input_ids,
    #     encoder_attn_mask,
    #     decoder_input_ids,
    #     decoder_attn_mask,
    #     encoder_decoder_attn_mask
    # )
    # print(output)

    print("Compiling the graph which may make some time, please wait for a moment....")
    t5_graph._compile(
        encoder_input_ids,
        encoder_attn_mask,
        decoder_input_ids,
        decoder_attn_mask,
        encoder_decoder_attn_mask,
    )

    convert_to_onnx_and_check(
        t5_graph,
        external_data=False,
        opset=11,
        flow_weight_dir=None,
        onnx_model_path="./",
        dynamic_batch_size=False,
        device="gpu_global",
        input_tensor_range=[0, 10],
    )