swinv2_loader.py 13.9 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json

import oneflow as flow

from .base_loader import ModelLoaderHuggerFace, ModelLoaderLiBai


class SwinV2LoaderHuggerFace(ModelLoaderHuggerFace):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)

        """NOTE: base_model_prefix_1 is SWINV2's prefix in Transformers.
        base_model_prefix_2 is SWINV2's prefix in LiBai."""

        self.base_model_prefix_1 = "swinv2"
        self.base_model_prefix_2 = ""

    def _convert_state_dict(self, flow_state_dict, cfg=None):
        """Convert state_dict's keys to match model.

        Args:
            flow_state_dict (OrderedDict): model state dict.
            cfg (dict): model's default config dict.

        Returns:
            OrderedDict: flow state dict.
        """
        # The converted checkpoint.
        oneflow_state_dict = flow_state_dict.copy()

        # prefix
        has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict)
        index_idx_1 = 3 if has_prefix else 2
        index_idx_2 = 5 if has_prefix else 4

        old_keys = oneflow_state_dict.keys()

        for key in list(old_keys):
            # Convert swinv2's embedding layers
            if "embeddings" in key:
                if "patch_embeddings.projection" in key:
                    if "weight" in key:
                        new_key = "patch_embed.proj.weight"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    if "bias" in key:
                        new_key = "patch_embed.proj.bias"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "norm" in key:
                    if "weight" in key:
                        new_key = "patch_embed.norm.weight"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    if "bias" in key:
                        new_key = "patch_embed.norm.bias"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            # Convert swinv2's layernorm layers
            elif "layernorm_before" in key:
                index_layer = key.split(".")[index_idx_1]
                index_block = key.split(".")[index_idx_2]
                if "weight" in key:
                    new_key = "layers." + index_layer + ".blocks." + index_block + ".norm1.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "bias" in key:
                    new_key = "layers." + index_layer + ".blocks." + index_block + ".norm1.bias"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            elif "layernorm_after" in key:
                index_layer = key.split(".")[index_idx_1]
                index_block = key.split(".")[index_idx_2]
                if "weight" in key:
                    new_key = "layers." + index_layer + ".blocks." + index_block + ".norm2.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "bias" in key:
                    new_key = "layers." + index_layer + ".blocks." + index_block + ".norm2.bias"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            # Convert swinv2's attention layers
            elif "attention" in key:
                index_layer = key.split(".")[index_idx_1]
                index_block = key.split(".")[index_idx_2]
                if "self" in key:
                    if (
                        "relative_position_bias_table" in key
                    ):  # convert relative_position_bias_table but not index
                        new_key = (
                            "layers."
                            + index_layer
                            + ".blocks."
                            + index_block
                            + ".attn.relative_position_bias_table"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif "relative_position_index" in key:
                        new_key = (
                            "layers."
                            + index_layer
                            + ".blocks."
                            + index_block
                            + ".attn.relative_position_index"
                        )
                        oneflow_state_dict.pop(key)
                    elif "continuous_position_bias_mlp" in key:
                        if (
                            "layers."
                            + index_layer
                            + ".blocks."
                            + index_block
                            + ".attn.cpb_mlp"
                            + ".0.weight"
                        ) in oneflow_state_dict.keys():
                            continue
                        new_key = (
                            "layers." + index_layer + ".blocks." + index_block + ".attn.cpb_mlp"
                        )
                        m_1_w = key
                        m_1_b = key.replace(".0.weight", ".0.bias")
                        m_2_w = key.replace(".0.weight", ".2.weight")
                        oneflow_state_dict[new_key + ".0.weight"] = oneflow_state_dict.pop(m_1_w)
                        oneflow_state_dict[new_key + ".0.bias"] = oneflow_state_dict.pop(m_1_b)
                        oneflow_state_dict[new_key + ".2.weight"] = oneflow_state_dict.pop(m_2_w)
                    elif "logit_scale" in key:
                        new_key = (
                            "layers." + index_layer + ".blocks." + index_block + ".attn.logit_scale"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)[None, ...]
                    else:
                        if (
                            "layers." + index_layer + ".blocks." + index_block + ".attn.qkv.weight"
                            in oneflow_state_dict.keys()
                        ):
                            continue
                        q_w = key
                        k_w = q_w.replace("query", "key")
                        v_w = q_w.replace("query", "value")
                        q_b = q_w.replace("weight", "bias")
                        v_b = v_w.replace("weight", "bias")

                        qkv_w = flow.cat(
                            (
                                oneflow_state_dict.pop(q_w),
                                oneflow_state_dict.pop(k_w),
                                oneflow_state_dict.pop(v_w),
                            ),
                            dim=0,
                        )

                        new_key = (
                            "layers." + index_layer + ".blocks." + index_block + ".attn.qkv.weight"
                        )
                        oneflow_state_dict[new_key] = qkv_w

                        new_key = (
                            "layers." + index_layer + ".blocks." + index_block + ".attn.q_bias"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(q_b)
                        new_key = new_key.replace("q_bias", "v_bias")
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(v_b)

                elif "output" in key:
                    if "dense" in key:
                        if "weight" in key:
                            new_key = (
                                "layers."
                                + index_layer
                                + ".blocks."
                                + index_block
                                + ".attn.proj.weight"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        if "bias" in key:
                            new_key = (
                                "layers."
                                + index_layer
                                + ".blocks."
                                + index_block
                                + ".attn.proj.bias"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            elif "intermediate" in key:
                index_layer = key.split(".")[index_idx_1]
                index_block = key.split(".")[index_idx_2]
                if "weight" in key:
                    if (
                        "layers."
                        + index_layer
                        + ".blocks."
                        + index_block
                        + ".mlp.dense_h_to_4h.weight"
                        in oneflow_state_dict.keys()
                    ):
                        continue
                    w = key
                    b = key.replace("weight", "bias")
                    new_key = (
                        "layers."
                        + index_layer
                        + ".blocks."
                        + index_block
                        + ".mlp.dense_h_to_4h.weight"
                    )
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(w)
                    new_key = new_key.replace("weight", "bias")
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(b)

            elif "output" in key:
                index_layer = key.split(".")[index_idx_1]
                index_block = key.split(".")[index_idx_2]
                if "dense.weight" in key:
                    if (
                        "layers."
                        + index_layer
                        + ".blocks."
                        + index_block
                        + ".mlp.dense_4h_to_h.weight"
                        in oneflow_state_dict.keys()
                    ):
                        continue
                    w = key
                    b = w.replace("weight", "bias")
                    new_key = (
                        "layers."
                        + index_layer
                        + ".blocks."
                        + index_block
                        + ".mlp.dense_4h_to_h.weight"
                    )
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(w)
                    new_key = new_key.replace("weight", "bias")
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(b)

            elif "downsample" in key:
                index_layer = key.split(".")[index_idx_1]
                if "reduction.weight" in key:
                    new_key = "layers." + index_layer + ".downsample.reduction.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "norm" in key:
                    if (
                        "layers." + index_layer + ".downsample.norm.weight"
                        in oneflow_state_dict.keys()
                    ):
                        continue
                    w = key
                    b = w.replace("weight", "bias")
                    new_key = "layers." + index_layer + ".downsample.norm.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(w)
                    new_key = new_key.replace("weight", "bias")
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(b)

            elif "layernorm" in key:
                if "weight" in key:
                    new_key = "norm.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "bias" in key:
                    new_key = "norm.bias"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            elif "classifier" in key:
                if "weight" in key:
                    new_key = "head.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif "bias" in key:
                    new_key = "head.bias"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
            else:
                oneflow_state_dict[key] = oneflow_state_dict.pop(key)

        return oneflow_state_dict

    def _load_config_from_json(self, config_file):
        """load config from `config.json`, and update default config.

        Args:
            config_file (str): Path of config file.
        """
        with open(config_file, mode="r", encoding="utf-8") as f:
            cfg_dict = json.load(f)

        # update libai_cfg by config.json
        self._update_cfg("img_size", cfg_dict["image_size"])
        self._update_cfg("patch_size", cfg_dict["patch_size"])
        self._update_cfg("embed_dim", cfg_dict["embed_dim"])
        self._update_cfg("depths", cfg_dict["depths"])
        self._update_cfg("num_heads", cfg_dict["num_heads"])
        self._update_cfg("window_size", cfg_dict["window_size"])
        self._update_cfg("mlp_ratio", cfg_dict["mlp_ratio"])
        self._update_cfg("qkv_bias", cfg_dict["qkv_bias"])
        self._update_cfg("drop_path_rate", cfg_dict["drop_path_rate"])
        self._update_cfg("pretrained_window_sizes", cfg_dict["pretrained_window_sizes"])

        # update libai_cfg by kwargs
        for k, v in self.kwargs.items():
            self._update_cfg(k, v)

        self._update_cfg_log()


class SwinV2LoaderLiBai(ModelLoaderLiBai):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)
        self.base_model_prefix_2 = ""