"test/gemm/gemm_xdl_int8.cpp" did not exist on "0c79af12e882c29c1f5a2895e6f749cdee9e15b7"
reg_evaluator.py 2.04 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import OrderedDict

import numpy as np
from scipy.stats import pearsonr, spearmanr

from libai.utils import distributed as dist

from .evaluator import DatasetEvaluator

logger = logging.getLogger(__name__)


class RegEvaluator(DatasetEvaluator):
    def __init__(self):
        self._predictions = []

    def reset(self):
        self._predictions = []

    def process(self, inputs, outputs):
        pred_logits = outputs["prediction_scores"]
        labels = inputs["labels"]

        # measure accuracy
        preds = pred_logits.cpu().topk(1)[1].squeeze(1).numpy()
        labels = labels.cpu().numpy()

        self._predictions.append({"preds": preds, "labels": labels})

    def evaluate(self):
        if not dist.is_main_process():
            return {}
        else:
            predictions = self._predictions

        preds = np.array([])
        labels = np.array([])
        for prediction in predictions:
            preds = np.concatenate((preds, prediction["preds"]))
            labels = np.concatenate((labels, prediction["labels"]))

        pearson_corr = pearsonr(preds, labels)[0]
        spearman_corr = spearmanr(preds, labels)[0]
        corr = (pearson_corr + spearman_corr) / 2

        self._results = OrderedDict()
        self._results["pearson"] = pearson_corr
        self._results["spearman"] = spearman_corr
        self._results["corr"] = corr

        return copy.deepcopy(self._results)