default.py 33.6 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import math
import os
import time
from collections import OrderedDict
from typing import Callable, Optional

import oneflow as flow
from omegaconf import OmegaConf
from termcolor import colored

from libai.config import LazyConfig, instantiate, try_get_key
from libai.data import Instance
from libai.engine import hooks
from libai.engine.trainer import EagerTrainer, GraphTrainer, TrainerBase
from libai.evaluation import inference_on_dataset, print_csv_format
from libai.models import build_graph, build_model
from libai.optim import build_optimizer
from libai.scheduler import build_lr_scheduler
from libai.tokenizer import build_tokenizer
from libai.utils import distributed as dist
from libai.utils.checkpoint import Checkpointer
from libai.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter
from libai.utils.logger import setup_logger

# --------------------------------------------------------
# References:
# https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/defaults.py
# --------------------------------------------------------


def _highlight(code, filename):
    try:
        import pygments
    except ImportError:
        return code

    from pygments.formatters import Terminal256Formatter
    from pygments.lexers import Python3Lexer, YamlLexer

    lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer()
    code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai"))
    return code


def _check_batch_size(cfg):
    train_micro_batch_size = try_get_key(cfg, "train.train_micro_batch_size", default=None)
    global_batch_size = try_get_key(cfg, "train.global_batch_size", default=None)
    num_accumulation_steps = try_get_key(cfg, "train.num_accumulation_steps", default=None)

    if train_micro_batch_size is not None and global_batch_size is not None:
        if num_accumulation_steps is None:
            if global_batch_size % (train_micro_batch_size * dist.get_data_parallel_size()) != 0:
                raise ValueError(
                    f"global_batch_size {global_batch_size} must be divisible by "
                    "train_micro_batch_size * data_parallel_size "
                    f"({train_micro_batch_size} * {dist.get_data_parallel_size()})"
                )

            cfg.train.num_accumulation_steps = global_batch_size // (
                train_micro_batch_size * dist.get_data_parallel_size()
            )

        else:
            if (
                global_batch_size
                != train_micro_batch_size * dist.get_data_parallel_size() * num_accumulation_steps
            ):
                raise ValueError(
                    f"global_batch_size {global_batch_size} must equal to "
                    "train_micro_batch_size * data_parallel_size * num_accumulation_steps "
                    f"({train_micro_batch_size} * {dist.get_data_parallel_size()} * {num_accumulation_steps})"  # noqa
                )
    elif train_micro_batch_size is not None and global_batch_size is None:
        if num_accumulation_steps is None:
            cfg.train.num_accumulation_steps = 1

        cfg.train.global_batch_size = (
            train_micro_batch_size
            * dist.get_data_parallel_size()
            * cfg.train.num_accumulation_steps
        )
    elif train_micro_batch_size is None and global_batch_size is not None:
        if num_accumulation_steps is None:
            cfg.train.num_accumulation_steps = 1

        if (
            global_batch_size % (dist.get_data_parallel_size() * cfg.train.num_accumulation_steps)
            != 0
        ):
            raise ValueError(
                f"global_batch_size {global_batch_size} must be divisible by "
                "data_parallel_size * num_accumulation_steps "
                f"({dist.get_data_parallel_size()} * {cfg.train.num_accumulation_steps})"
            )

        cfg.train.train_micro_batch_size = global_batch_size // (
            dist.get_data_parallel_size() * cfg.train.num_accumulation_steps
        )
    else:
        raise ValueError("train_micro_batch_size and global_batch_size must be set either")
    # Set total training samples.
    cfg.train.samples = cfg.train.train_iter * cfg.train.global_batch_size


def _compile_dependencies():
    logger = logging.getLogger(__name__)
    # =========================
    # Compile dataset C++ code.
    # =========================
    # TODO: move this to ninja
    if dist.get_local_rank() == 0:
        start_time = time.time()
        logger.info("> compiling dataset index builder ...")
        from libai.data.data_utils import compile_helper

        compile_helper()
        logger.info(
            ">>> done with dataset index builder. Compilation time: {:.3f} "
            "seconds".format(time.time() - start_time)
        )

    dist.synchronize()
    if dist.get_local_rank() == 0:
        logger.info(
            ">>> done with compiling. "
            "Compilation time: {:.3f} seconds".format(time.time() - start_time)
        )


def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the libai logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Setup the distributed environment
    4. Setup tokenizer if it's an NLP related task
    5. Check batch_size
    6. Backup the config to the output directory
    7. Compile dependencies

    Args:
        args (argparse.NameSpace): the command line arguments to be logged
    """

    output_dir = try_get_key(cfg, "train.output_dir")
    if dist.is_main_process() and output_dir:
        os.makedirs(output_dir, exist_ok=True)

    cfg.train.resume = args.resume

    rank = dist.get_rank()
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(rank, dist.get_world_size()))
    logger.info("Command line arguments: " + str(args))

    if hasattr(args, "config_file") and args.config_file != "":
        logger.info(
            "Contents of args.config_file={}:\n{}".format(
                args.config_file,
                _highlight(open(args.config_file, "r").read(), args.config_file),
            )
        )

    dist.setup_dist_util(cfg.train.dist)

    _check_batch_size(cfg)

    if dist.is_main_process() and output_dir:
        # Note: some of our scripts may expect the existence of
        # config.yaml in output directory
        path = os.path.join(output_dir, "config.yaml")
        LazyConfig.save(cfg, path)
        logger.info("Full config saved to {}".format(path))

    flow.boxing.nccl.set_fusion_threshold_mbytes(
        try_get_key(cfg, "train.nccl_fusion_threshold_mb", default=16)
    )
    flow.boxing.nccl.set_fusion_max_ops_num(
        try_get_key(cfg, "train.nccl_fusion_max_ops", default=24)
    )

    _compile_dependencies()


class DefaultTrainer(TrainerBase):
    """
    A trainer with default training logic. Compared to `TrainerBase`, it
    also contains the following logic:

    1. Create model, optimizer, scheduler, dataloader from the given config.
    2. Load a checkpoint or `cfg.MODEL.WEIGHTS`, if exists.
    3. Register a few common hooks defined by the config.

    With standard features, it is created to simplify the **standard model training workflow** and
    reduce code boilerplate for users who only need the standard training workflow.

    It means this class makes **many assumptions** about your training logic that
    may easily become invalid in a new research. In fact, any assumptions beyond those made in the
    :class:`TrainerBase` are too much for research.

    The code of this class has been annotated about restrictive assumptions it made.
    When they do not work for you, you're encouraged to:

    1. Overwrite methods of this class, OR:
    2. Use :class:`TrainerBase`, which only does minimal SGD training and
       nothing else. You can then add your own hooks if needed. OR:
    3. Write your own training loop similar to ``tools/train_net.py``.

    Also note that the behavior of this class, like other functions/classes in
    this file, is not stable, since it is meant to represent the "common default behavior".
    It is only guaranteed to work well with the standard models and training workflow in libai.
    To obtain more stable behavior, write your own training logic with other public APIs.


    Examples:

    .. code-block:: python

        trainer = DefaultTrainer(cfg)
        trainer.resume_or_load()  # load last checkpoint or MODEL.WEIGHTS
        trainer.train()

    Attributes:
        scheduler:
        checkpointer (Checkpointer):
        cfg (omegaconf.dictconfig.DictConfig):
    """

    def __init__(self, cfg):
        """
        Args:
            cfg (omegaconf.dictconfig.DictConfig):
        """
        super().__init__()
        self.cfg = cfg
        logger = logging.getLogger("libai")

        # setup_logger is not called for LiBai
        if not logger.isEnabledFor(logging.INFO):
            setup_logger()

        # Initialize tokenizer
        self.tokenizer = self.build_tokenizer(cfg)

        self.start_iter = 0
        if cfg.train.resume:
            save_file = os.path.join(cfg.train.output_dir, "last_checkpoint")
            try:
                with open(save_file, "r") as f:
                    last_saved = f.read().strip()
                assert (
                    last_saved != "model_final"
                ), "model training has finished, check your model in train.output_dir"
                self.start_iter = int(last_saved.split("_")[-1]) + 1
            except IOError:
                # If file doesn't exist, maybe because it has just been deleted.
                # We just set start_iter to 0.
                self.start_iter = 0
        if cfg.graph.enabled:
            cfg.dataloader.consumed_samples = self.start_iter * cfg.train.global_batch_size
        else:
            cfg.dataloader.consumed_samples = (
                self.start_iter * cfg.train.global_batch_size // cfg.train.num_accumulation_steps
            )

        self.train_loader = None
        self.test_loader = []

        train_loader, val_loader, test_loader = self.build_train_loader(cfg, self.tokenizer)
        self.train_loader = train_loader

        if val_loader is not None:
            self.test_loader.append(val_loader)
        if test_loader is not None:
            self.test_loader.append(test_loader)

        self.test_loader.extend(self.build_test_loader(cfg, self.tokenizer))

        if cfg.train.rdma_enabled:
            # set rdma
            flow.env.init_rdma()

        # Automatically scale the hyperparams
        self.auto_scale_hyperparams(cfg, self.train_loader)

        # Assume these objects must be constructed in this order.
        dist.synchronize()
        start_time = time.time()
        logger.info("> Start building model...")
        self.model = self.build_model(cfg)

        dist.synchronize()
        logger.info(
            ">>> done with building model. "
            "Building time: {:.3f} seconds".format(time.time() - start_time)
        )

        self.optimizer = self.build_optimizer(cfg, self.model)
        self.lr_scheduler = self.build_lr_scheduler(cfg, self.optimizer)

        if cfg.graph.enabled:
            self.graph_train = self.build_graph(
                cfg, self.model, self.optimizer, self.lr_scheduler, is_train=True
            )
            self.graph_eval = self.build_graph(cfg, self.model, is_train=False)
            self._trainer = GraphTrainer(
                self.graph_train, self.train_loader, cfg.train.num_accumulation_steps
            )
        else:
            self._trainer = EagerTrainer(
                self.model, self.train_loader, self.optimizer, cfg.train.num_accumulation_steps
            )

        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        if cfg.graph.enabled:
            self.checkpointer = Checkpointer(
                # Assume you want to save checkpoints together with logs/statistics
                self.model,
                cfg.train.output_dir,
                # In static graph mode, optimizer and scheduler state_dict will
                # be saved with graph.state_dict().
                graph=self.graph_train,
                # We print lr by `LRScheduler` hook, so we need to save/load eager lr_scheduler,
                # otherwise, lr will be reset to initial state when resuming training.
                lr_scheduler=self.lr_scheduler,
            )
        else:
            self.checkpointer = Checkpointer(
                # Assume you want to save checkpoints together with logs/statistics
                self.model,
                cfg.train.output_dir,
                optimizer=self.optimizer,
                lr_scheduler=self.lr_scheduler,
            )

        # Loading checkpoint before dataloader construction, because
        # dataloader needs to know the consumed iterations from
        # the last breakpoint.
        self.resume_or_load(cfg.train.resume)
        cfg.train.start_iter = self.start_iter

        # global_batch_size = micro_batch_size * num_gpus * num_accumulation_steps
        # When using gradient accumulation in graph mode, each run_step
        # handle `global_batch_size` samples.
        # When using gradient accumulation in eager mode, each run_step just handle
        # `micro_batch_size * num_gpus` samples, so we need to divide `num_accumulation_steps`
        # to get the actual `batch_size` for computing `throughput` and `consumed_samples`
        self.global_batch_size = (
            cfg.train.global_batch_size
            if cfg.graph.enabled
            else cfg.train.global_batch_size // cfg.train.num_accumulation_steps
        )
        self.max_iter = cfg.train.train_iter

        self.register_hooks(self.build_hooks())

    def resume_or_load(self, resume=True):
        """
        If `resume==True` and `cfg.train.output_dir` contains the last checkpoint (defined by
        a `last_checkpoint` file), resume from the file. Resuming means loading all
        available states (eg. optimizer and scheduler) and update iteration counter
        from the checkpoint. ``cfg.train.load_weight`` will not be used.
        Otherwise, this is considered as an independent training. The method will load model
        weights from the file ``cfg.train.load_weight`` (but will not load other states) and start
        from iteration 0.

        Args:
            resume (bool): whether to do resume or not
        """
        weight_path = self.cfg.train.load_weight
        assert isinstance(
            weight_path, str
        ), f"cfg.train.load_weight:{self.cfg.train.load_weight} must be string"
        if resume:
            assert self.checkpointer.has_checkpoint()
            # The checkpoint stores the training iteration that just finished, thus we start
            # at the next iteration (or iter zero if there's no checkpoint).
            assert self.start_iter == (
                self.checkpointer.resume_or_load(None, resume=True).get("iter", -1) + 1
            )
        elif len(weight_path) != 0:
            assert os.path.isdir(
                weight_path
            ), f"cfg.train.load_weight:{self.cfg.train.load_weight} must be directory"
            self.checkpointer.load(weight_path, checkpointables=[])

    def build_hooks(self):
        """
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.

        Returns:
            list[HookBase]:
        """

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(),  # for beauty lr scheduler printer in `nn.Graph` mode
            hooks.PeriodicCheckpointer(
                self.checkpointer,
                self.cfg.train.checkpointer.period,
                max_to_keep=self.cfg.train.checkpointer.max_to_keep,
            ),
        ]

        if self.cfg.train.evaluation.enabled:
            assert self.cfg.train.evaluation.eval_iter > 0, "run_iter must be positive number"

            def test_and_save_results():
                model = self.graph_eval if self.cfg.graph.enabled else self.model
                self._last_eval_results = self.test(self.cfg, self.test_loader, model)
                return self._last_eval_results

            ret.append(hooks.EvalHook(self.cfg.train.evaluation.eval_period, test_and_save_results))
            ret.append(
                hooks.BestCheckpointer(
                    self.cfg.train.evaluation.eval_period,
                    self.checkpointer,
                    val_metric=try_get_key(
                        self.cfg, "train.evaluation.eval_metric", default="Acc@1"
                    ),
                    mode=try_get_key(self.cfg, "train.evaluation.eval_mode", default="max"),
                )
            )

        if dist.is_main_process():
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter(self.build_writers(), self.cfg.train.log_period))
        return ret

    def build_writers(self):
        """
        Build a list of writers to be used. By default it contains
        writers that write metrics to the screen,
        a json file, and a tensorboard event file respectively.
        If you'd like a different list of writers, you can overwrite it in
        your trainer.

        Returns:
            list[EventWriter]: a list of :class:`EventWriter` objects.

        It is now implemented by:

        .. code-block:: python

            return [
                CommonMetricPrinter(self.global_batch_size, self.max_iter),
                JSONWriter(os.path.join(self.cfg.train.output_dir, "metrics.json")),
                TensorboardXWriter(self.cfg.train.output_dir),
            ]
        """
        # Assume the default print/log frequency.
        return [
            # It may not always print what you want to see, since it prints "common" metrics only.
            CommonMetricPrinter(self.global_batch_size, self.max_iter),
            JSONWriter(os.path.join(self.cfg.train.output_dir, "metrics.json")),
            TensorboardXWriter(self.cfg.train.output_dir),
        ]

    def train(self):
        """
        Run training.

        Returns:
            OrderedDict of results, if evaluation is enabled. Otherwise None.
        """
        super().train(self.start_iter, self.max_iter)

    def run_step(self):
        self._trainer.iter = self.iter
        self._trainer.run_step(self.get_batch, self.cfg.train.input_placement_device)

    @classmethod
    def get_batch(
        cls,
        data: Instance,
        input_placement_device: str = "cuda",
        mixup_func: Optional[Callable] = None,
    ):
        """
        Convert batched local tensor to distributed tensor for model step running.

        If you want to do something with batched data before model, (e.g. mixup),
        you can rewrite this function.
        """
        if isinstance(data, flow.utils.data._utils.worker.ExceptionWrapper):
            data.reraise()

        if mixup_func is not None:
            images, labels = mixup_func(
                data.get("images").tensor.cuda(),
                data.get("labels").tensor.cuda(),
            )
            data.get("images").tensor = images
            data.get("labels").tensor = labels

        ret_dict = {}
        for key, value in data.get_fields().items():
            value.to_global(device_type=input_placement_device)
            ret_dict[key] = value.tensor
        return ret_dict

    @classmethod
    def build_tokenizer(cls, cfg):
        """
        Returns:
            libai.tokenizer.PreTrainedTokenizer:

        It now calls :func:`libai.tokenizer.build_tokenizer`.
        """
        tokenizer = None
        if try_get_key(cfg, "tokenization") is not None:
            tokenizer = build_tokenizer(cfg.tokenization)
            # FIXME(lxy): In case model is not defined with cfg, the `vocab_size` can be
            # accessed by `model.vocab_size`.
            if try_get_key(cfg, "model.cfg.vocab_size", default=None) is not None:
                # In case the model does not need vocab_size as argument
                multiple = (
                    cfg.tokenization.make_vocab_size_divisible_by
                    * cfg.train.dist.tensor_parallel_size
                )
                cfg.model.cfg.vocab_size = tokenizer.padded_vocab_size(multiple)
        return tokenizer

    @classmethod
    def build_model(cls, cfg):
        """
        Returns:
            flow.nn.Module:

        It now calls :func:`libai.models.build_model`.
        Overwrite it if you'd like a different model.
        """
        assert try_get_key(cfg, "model") is not None, "cfg must contain `model` namespace"
        # Set model fp16 option because of embedding layer `white_identity` manual
        # insert for amp training if provided.
        if try_get_key(cfg.model, "cfg.amp_enabled") is not None:
            cfg.model.cfg.amp_enabled = cfg.train.amp.enabled and cfg.graph.enabled
        # In case some model define without cfg keyword.
        elif try_get_key(cfg.model, "amp_enabled") is not None:
            cfg.model.amp_enabled = cfg.train.amp.enabled and cfg.graph.enabled
        model = build_model(cfg.model)
        logger = logging.getLogger(__name__)
        logger.info("Model:\n{}".format(model))
        model._apply(dist.convert_to_distributed_default_setting)
        return model

    @classmethod
    def build_graph(cls, cfg, model, optimizer=None, lr_scheduler=None, is_train=True):
        assert try_get_key(cfg, "graph") is not None, "cfg must contain `graph` namespace"
        graph = build_graph(cfg, model, optimizer, lr_scheduler, is_train)
        debug_graph = try_get_key(cfg, "graph.debug", default=-1)
        if debug_graph >= 0:
            logger = logging.getLogger(__name__)
            logger.info("Graph debug mode on, automatically output debug info.")
            graph.debug(cfg.graph.debug)
        return graph

    @classmethod
    def build_optimizer(cls, cfg, model):
        """
        Returns:
            flow.optim.Optimizer:

        It now calls :func:`libai.optim.build_optimizer`.
        Overwrite it if you'd like a different optimizer.
        """
        assert try_get_key(cfg, "optim") is not None, "cfg must contain `optim` namespace"
        return build_optimizer(cfg.optim, model)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`libai.scheduler.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        assert (
            try_get_key(cfg, "train.scheduler") is not None
        ), "cfg.train must contain `scheduler` namespace"
        return build_lr_scheduler(cfg.train.scheduler, optimizer)

    @classmethod
    def build_train_loader(cls, cfg, tokenizer=None):
        """
        Returns:
            iterable

        It now calls :func:`libai.data.build_train_valid_test_loader`.
        Overwrite it if you'd like a different data loader.
        """
        assert (
            try_get_key(cfg, "dataloader.train") is not None
        ), "cfg must contain `dataloader.train` namespace"
        logger = logging.getLogger(__name__)
        logger.info("Prepare training, validating, testing set")
        if cfg.graph.enabled:
            # In static graph mode, data will be sliced in nn.Graph automatically,
            # dataloader will get micro-batch-size and data will be concated
            # in graph_trainer.run_step to get mini-batch-size.
            cfg.dataloader.train.train_batch_size = cfg.train.train_micro_batch_size
        else:
            # In eager mode, gradient accumulation will act like PyTorch, so dataloader
            # will get micro-batch-size
            cfg.dataloader.train.train_batch_size = cfg.train.train_micro_batch_size
        cfg.dataloader.train.test_batch_size = cfg.train.test_micro_batch_size
        cfg.dataloader.train.seed = cfg.train.seed

        # used by nlp dataloader
        if hasattr(cfg.dataloader.train, "train_val_test_num_samples"):
            eval_iter = (
                (cfg.train.train_iter // cfg.train.evaluation.eval_period + 1)
                * cfg.train.evaluation.eval_iter
                if cfg.train.evaluation.enabled
                # samples for test_dataset must be larger than 0 even if there is no evaluation
                else 1
            )
            test_iter = cfg.train.evaluation.eval_iter if cfg.train.evaluation.enabled else 1

            cfg.dataloader.train.train_val_test_num_samples = [
                int(cfg.train.samples),
                int(eval_iter * cfg.train.test_micro_batch_size * dist.get_data_parallel_size()),
                int(test_iter * cfg.train.test_micro_batch_size * dist.get_data_parallel_size()),
            ]

        if OmegaConf.is_list(cfg.dataloader.train.dataset):
            for dataset in cfg.dataloader.train.dataset:
                if hasattr(dataset, "seed"):
                    dataset.seed = cfg.train.seed
        else:
            dataset = cfg.dataloader.train.dataset
            if hasattr(dataset, "seed"):
                dataset.seed = cfg.train.seed

        # Set tokenizer for each dataset
        if tokenizer:
            if OmegaConf.is_list(cfg.dataloader.train.dataset):
                for dataset in cfg.dataloader.train.dataset:
                    dataset.tokenizer = tokenizer
            else:
                cfg.dataloader.train.dataset.tokenizer = tokenizer

        train_loader, valid_loader, test_loader = instantiate(
            cfg.dataloader.train, _recursive_=False
        )
        return train_loader, valid_loader, test_loader

    @classmethod
    def build_test_loader(cls, cfg, tokenizer=None):
        """
        Returns:
            iterable

        It now calls :func:`libai.data.build_image_test_loader` for CV tasks
        or :func:`libai.data.build_nlp_test_loader` for NLP tasks.
        Overwrite it if you'd like a different data loader.
        """
        # If there is no test_loader, just return []
        if not try_get_key(cfg, "dataloader.test", default=False):
            return []
        logger = logging.getLogger(__name__)
        logger.info("Prepare testing set")
        assert OmegaConf.is_list(
            cfg.dataloader.test
        ), f"dataloader.test must be list but got type of {type(cfg.dataloader.test)}"
        for i in range(len(cfg.dataloader.test)):
            cfg.dataloader.test[i].test_batch_size = cfg.train.test_micro_batch_size
            cfg.dataloader.test[i].seed = cfg.train.seed  # set seed
            if tokenizer:
                cfg.dataloader.test[i].dataset.tokenizer = tokenizer
        # list[dataloader1, dataloader2, ...]
        test_loader = instantiate(cfg.dataloader.test, _recursive_=False)
        return test_loader

    @classmethod
    def auto_scale_hyperparams(cls, cfg, data_loader):
        logger = logging.getLogger(__name__)
        log_info = ""

        # Get or set default iteration cfg
        train_iter = try_get_key(cfg, "train.train_iter", default=0)
        train_epoch = try_get_key(cfg, "train.train_epoch", default=0)
        warmup_ratio = try_get_key(cfg, "train.warmup_ratio", default=0)
        assert (
            warmup_ratio < 1 and warmup_ratio >= 0
        ), "warmup_ratio must be in [0, 1) that presents the ratio of warmup iter to the train iter"

        # Automatically scale iteration num depend on the settings
        # The total iters in one epoch is `len(dataset) / global_batch_size`
        cfg.train.train_iter = max(
            math.ceil(len(data_loader.dataset) * train_epoch / cfg.train.global_batch_size),
            train_iter,
        )
        cfg.train.warmup_iter = math.ceil(cfg.train.train_iter * cfg.train.warmup_ratio)
        if not cfg.graph.enabled:
            # In eager mode, dataloader only get micro-batch-size each iter,
            # which is mini-batch-size // num_accumulation, so scale `train_iter`
            # and `warmup_iter` to be consistent with static graph mode.
            cfg.train.train_iter *= cfg.train.num_accumulation_steps
            cfg.train.warmup_iter *= cfg.train.num_accumulation_steps
        log_info += "Auto-scaling the config to train.train_iter={}, train.warmup_iter={}".format(
            cfg.train.train_iter, cfg.train.warmup_iter
        )

        # Automatically scale the milestones
        if try_get_key(cfg, "train.scheduler.milestones"):
            if len(
                [
                    milestone
                    for milestone in cfg.train.scheduler.milestones
                    if milestone < 0 or milestone >= 1
                ]
            ):
                raise ValueError(
                    "milestones should be a list of increasing ratio in [0, 1), but got {}".format(
                        cfg.train.scheduler.milestones
                    )
                )
            cfg.train.scheduler.milestones = [
                int(milestone * cfg.train.train_iter)
                for milestone in cfg.train.scheduler.milestones
            ]
            log_info += f", scheduler milestones={cfg.train.scheduler.milestones}"
        logger.info(log_info)

        # Global scheduler cfg
        cfg.train.scheduler.warmup_iter = cfg.train.warmup_iter
        cfg.train.scheduler.max_iter = cfg.train.train_iter

        # train iter per epoch
        iter_per_epoch = len(data_loader.dataset) // cfg.train.global_batch_size

        # rescale eval period
        if try_get_key(cfg, "train.evaluation.eval_after_n_epoch"):
            cfg.train.evaluation.eval_period = (
                iter_per_epoch * cfg.train.evaluation.eval_after_n_epoch
            )
            logger.info(
                f"Auto-scaling the config "
                f"train.evaluation.eval_after_n_epoch={cfg.train.evaluation.eval_after_n_epoch} "
                f"to train.evaluation.eval_period={cfg.train.evaluation.eval_period}"
            )

        # rescale save model period
        if try_get_key(cfg, "train.checkpointer.save_model_after_n_epoch"):
            cfg.train.checkpointer.period = (
                iter_per_epoch * cfg.train.checkpointer.save_model_after_n_epoch
            )
            logger.info(
                f"Auto-scaling the config "
                f"train.checkpointer.save_model_after_n_epoch="
                f"{cfg.train.checkpointer.save_model_after_n_epoch} "
                f"to train.checkpointer.period={cfg.train.checkpointer.period}"
            )

    @classmethod
    def build_evaluator(cls, cfg):
        evaluator = instantiate(cfg.train.evaluation.evaluator)
        return evaluator

    @classmethod
    def test(cls, cfg, test_loaders, model, evaluator=None):
        """
        Evaluate the given model. The given model is expected to already contain
        weights to evaluate.

        Args:
            cfg (CfgNode):
            test_loaders: list [dataloader1, dataloader2, ...]
            model (nn.Graph):
            evaluators (list[DatasetEvaluator] or None): if None, will call
                :meth:`build_evaluator`. Otherwise, must have the same length as
                ``cfg.DATASETS.TEST``.

        Returns:
            dict: a dict of result metrics
        """
        logger = logging.getLogger(__name__)
        # TODO: support multi evaluator
        # if isinstance(evaluators, DatasetEvaluator):
        #     evaluators = [evaluators]
        test_batch_size = cfg.train.test_micro_batch_size * dist.get_data_parallel_size()
        evaluator = cls.build_evaluator(cfg) if not evaluator else evaluator

        results = OrderedDict()
        for idx, data_loader in enumerate(test_loaders):
            # When evaluators are passed in as arguments,
            # implicitly assume that evaluators can be created before data_loader.
            dataset_name = type(data_loader.dataset).__name__
            # TODO: support multi evaluator
            # if evaluators is not None:
            #     evaluator = evaluators[idx]
            # else:
            #     try:
            #         evaluator = cls.build_evaluator(cfg)
            #     except NotImplementedError:
            #         logger.warn(
            #             "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
            #             "or implement its `build_evaluator` method."
            #         )
            #         results[dataset_name] = {}
            #         continue
            results_i = inference_on_dataset(
                model,
                data_loader,
                test_batch_size,
                cfg.train.evaluation.eval_iter,
                cls.get_batch,
                cfg.train.input_placement_device,
                evaluator,
            )
            results[dataset_name] = results_i
            if dist.is_main_process():
                assert isinstance(
                    results_i, dict
                ), "Evaluator must return a dict on the main process. Got {} instead.".format(
                    results_i
                )
                logger.info(
                    "Evaluation results for {} in csv format:".format(
                        colored(dataset_name, "green")
                    )
                )
                print_csv_format(results_i)

        if len(results) == 1:
            results = list(results.values())[0]
        return results