build.py 14.2 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from omegaconf import OmegaConf
from oneflow.utils.data import DataLoader
from oneflow.utils.data.dataset import ConcatDataset

from libai.config import LazyCall, instantiate
from libai.utils import distributed as dist

from .data_utils import get_train_valid_test_split_
from .samplers import CyclicSampler, SingleRoundSampler
from .structures import Instance


def build_nlp_train_val_test_loader(
    dataset,
    splits,
    weights,
    train_val_test_num_samples,
    train_batch_size,
    test_batch_size,
    train_sampler=LazyCall(CyclicSampler)(shuffle=True),
    test_sampler=LazyCall(SingleRoundSampler)(shuffle=False, drop_last=False),
    num_workers=4,
    consumed_samples=0,
    seed=0,
    collate_fn=None,
    dataset_mixer=ConcatDataset,
):
    """
    Build nlp train_val_test dataloader, used for dataset lack of valid/test dataset

    Returns:
        It will return train/valid/test dataloader

            * train_loader: dataloader for training
            * valid_loader: dataloader for validation
            * test_loader: dataloader for testing

    Arguments:
        dataset: dataset from which to load the data. e.g.: dataset or [dataset1, dataset2, ...]
        splits: ratio config for spliting dataset to train/valid/test. e.g.: [[7, 2, 1], ...]
        weights: ratio config for concate dataset list (Not Supported yet). e.g.: [1.0, ...]
        train_batch_size: how many samples per batch to load in training (micro-batch-size per GPU).
        test_batch_size: how many samples per batch to load in testing (micro-batch-size per GPU).
        sampler:  defines the strategy to draw
            samples from the dataset. Can be any ``Iterable`` with ``__len__``
            implemented.
        num_workers: how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``4``).
        consumed_samples: the number of samples that have been trained at the current time,
            used for resuming training (default: ``0``).
        seed: random seed, used for reproducing experiments (default: ``0``).
        collate_fn: merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a
            map-style dataset.
        dataset_mixer: function for concating list dataset.
    """

    def build_dataset(index, dataset):
        doc_idx_ptr = indexed_dataset.get_doc_idx()
        start_index = ds_splits[index]
        end_index = ds_splits[index + 1] + 1
        indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
        dataset.indexed_dataset = indexed_dataset
        dataset.max_num_samples = train_val_test_num_samples[index]
        dataset = instantiate(dataset)

        # Set the original pointer so dataset remains the main dataset.
        indexed_dataset.set_doc_idx(doc_idx_ptr)
        # check
        assert indexed_dataset.doc_idx[0] == 0
        assert indexed_dataset.doc_idx.shape[0] == (total_num_of_documents + 1)
        return dataset

    if OmegaConf.is_list(dataset):
        dataset = list(dataset)
    elif not isinstance(dataset, list):
        dataset = [dataset]

    assert len(dataset) == len(splits), "datasets length must equal splits length"
    assert len(dataset) == len(weights), "datasets length must equal weights length"

    train_datasets, val_datasets, test_datasets = [], [], []
    for dst, split in zip(dataset, splits):
        indexed_dataset = instantiate(dst.indexed_dataset)
        total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
        ds_splits = get_train_valid_test_split_(total_num_of_documents, split)

        train_dataset = build_dataset(0, dst)
        val_dataset = build_dataset(1, dst)
        test_dataset = build_dataset(2, dst)

        train_datasets.append(train_dataset)
        val_datasets.append(val_dataset)
        test_datasets.append(test_dataset)

    # [dataset, dataset] -> dataset -> dataloader
    train_dataset = dataset_mixer(train_datasets)
    val_dataset = dataset_mixer(val_datasets)
    test_dataset = dataset_mixer(test_datasets)

    collate_fn = trivial_batch_collator if collate_fn is None else collate_fn

    train_loader, _, _ = build_nlp_train_loader(
        dataset=train_dataset,
        train_batch_size=train_batch_size,
        test_batch_size=None,
        sampler=train_sampler,
        num_workers=num_workers,
        consumed_samples=consumed_samples,
        seed=seed,
        collate_fn=collate_fn,
    )

    valid_loader = build_nlp_test_loader(
        dataset=val_dataset,
        test_batch_size=test_batch_size,
        sampler=test_sampler,
        num_workers=num_workers,
        seed=seed,
        collate_fn=collate_fn,
    )

    test_loader = build_nlp_test_loader(
        dataset=test_dataset,
        test_batch_size=test_batch_size,
        sampler=test_sampler,
        num_workers=num_workers,
        seed=seed,
        collate_fn=collate_fn,
    )

    return train_loader, valid_loader, test_loader


def build_nlp_train_loader(
    dataset,
    train_batch_size,
    test_batch_size=None,
    sampler=LazyCall(CyclicSampler)(shuffle=True),
    num_workers=4,
    consumed_samples=0,
    seed=0,
    collate_fn=None,
    dataset_mixer=ConcatDataset,
    **kwargs
):
    """
    Build nlp train dataloader, it's used for train dataset

    Returns:
        It will return train dataloader, and Nonetype for valid/test dataloader

            * train_loader: dataloader for training
            * None: Nonetype
            * None: Nonetype

    Arguments:
        dataset: dataset from which to load the data. e.g.: dataset or [dataset1, dataset2, ...]
        train_batch_size: how many samples per batch to load in training (micro-batch-size per GPU).
        test_batch_size: no use, set it to None.
        sampler:  defines the strategy to draw
            samples from the dataset. Can be any ``Iterable`` with ``__len__``
            implemented.
        num_workers: how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``4``).
        consumed_samples: the number of samples that have been trained at the current time,
            used for resuming training (default: ``0``).
        seed: random seed, used for reproducing experiments (default: ``0``).
        collate_fn: merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a
            map-style dataset.
        dataset_mixer: function for concating list dataset.
    """
    dataset = instantiate(dataset)
    if OmegaConf.is_list(dataset):
        dataset = list(dataset)
    elif not isinstance(dataset, list):
        dataset = [dataset]

    if len(dataset) > 1:
        dataset = dataset_mixer(dataset)
    else:
        dataset = dataset[0]

    sampler.dataset = dataset
    sampler.micro_batch_size = train_batch_size
    sampler.consumed_samples = consumed_samples
    sampler.data_parallel_rank = dist.get_data_parallel_rank()
    sampler.data_parallel_size = dist.get_data_parallel_size()
    sampler.seed = seed
    sampler = instantiate(sampler)

    dataloader = DataLoader(
        dataset,
        batch_sampler=sampler,
        num_workers=num_workers,
        persistent_workers=True if num_workers > 0 else False,
        collate_fn=trivial_batch_collator if collate_fn is None else collate_fn,
        **kwargs,
    )

    return dataloader, None, None


def build_nlp_test_loader(
    dataset,
    test_batch_size,
    sampler=LazyCall(SingleRoundSampler)(shuffle=False, drop_last=False),
    num_workers=4,
    seed=0,
    collate_fn=None,
):
    """
    Build nlp test dataloader, it's used for test dataset

    Returns:
        It will return test dataloader

            * test_loader: dataloader for testing

    Arguments:
        dataset: dataset from which to load the data. e.g.: dataset or [dataset1, dataset2, ...]
        test_batch_size: how many samples per batch to load in testing (micro-batch-size per GPU).
        sampler:  defines the strategy to draw
            samples from the dataset. Can be any ``Iterable`` with ``__len__``
            implemented.
        num_workers: how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``4``).
        seed: random seed, used for reproducing experiments (default: ``0``).
        collate_fn: merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a
            map-style dataset.
    """
    dataset = instantiate(dataset)
    collate_fn = trivial_batch_collator if collate_fn is None else collate_fn

    sampler.dataset = dataset
    sampler.micro_batch_size = test_batch_size
    sampler.data_parallel_rank = dist.get_data_parallel_rank()
    sampler.data_parallel_size = dist.get_data_parallel_size()
    sampler.seed = seed
    sampler = instantiate(sampler)

    test_loader = DataLoader(
        dataset,
        batch_sampler=sampler,
        num_workers=num_workers,
        persistent_workers=True if num_workers > 0 else False,
        collate_fn=collate_fn,
    )
    return test_loader


def build_image_train_loader(
    dataset,
    train_batch_size,
    test_batch_size=None,
    sampler=LazyCall(CyclicSampler)(shuffle=True),
    num_workers=4,
    consumed_samples=0,
    seed=0,
    collate_fn=None,
    dataset_mixer=ConcatDataset,
    mixup_func=None,
    **kwargs
):
    """
    Build image train dataloader, it's used for train dataset

    Returns:
        It will return train dataloader, and Nonetype for valid/test dataloader

            * train_loader: dataloader for training
            * None: Nonetype
            * None: Nonetype

    Arguments:
        dataset: dataset from which to load the data. e.g.: dataset or [dataset1, dataset2, ...]
        train_batch_size: how many samples per batch to load in training (micro-batch-size per GPU).
        test_batch_size: no use, set it to None.
        sampler:  defines the strategy to draw
            samples from the dataset. Can be any ``Iterable`` with ``__len__``
            implemented.
        num_workers: how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``4``).
        consumed_samples: the number of samples that have been trained at the current time,
            used for resuming training (default: ``0``).
        seed: random seed, used for reproducing experiments (default: ``0``).
        collate_fn: merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a
            map-style dataset.
        dataset_mixer: function for concating list dataset.
        mixup_func: function for data argumentation.
    """
    dataset = instantiate(dataset)

    if OmegaConf.is_list(dataset):
        dataset = list(dataset)
    elif not isinstance(dataset, list):
        dataset = [dataset]

    if len(dataset) > 1:
        dataset = dataset_mixer(dataset)
    else:
        dataset = dataset[0]

    sampler.dataset = dataset
    sampler.micro_batch_size = train_batch_size
    sampler.consumed_samples = consumed_samples
    sampler.data_parallel_rank = dist.get_data_parallel_rank()
    sampler.data_parallel_size = dist.get_data_parallel_size()
    sampler.seed = seed
    sampler = instantiate(sampler)

    dataloader = DataLoader(
        dataset,
        batch_sampler=sampler,
        num_workers=num_workers,
        persistent_workers=True if num_workers > 0 else False,
        collate_fn=trivial_batch_collator if collate_fn is None else collate_fn,
        **kwargs,
    )
    # Bind up mixup_func to dataloader, and this will be used in Trainer.get_batch
    dataloader.mixup_func = instantiate(mixup_func)

    return dataloader, None, None


def build_image_test_loader(
    dataset,
    test_batch_size,
    sampler=LazyCall(SingleRoundSampler)(shuffle=True, drop_last=False),
    num_workers=4,
    seed=0,
    collate_fn=None,
    **kwargs
):
    """
    Build image test dataloader, used for test dataset

    Returns:
        It will return test dataloader

            * test_loader: dataloader for testing

    Arguments:
        dataset: dataset from which to load the data. e.g.: dataset or [dataset1, dataset2, ...]
        test_batch_size: how many samples per batch to load in testing (micro-batch-size per GPU).
        sampler:  defines the strategy to draw
            samples from the dataset. Can be any ``Iterable`` with ``__len__``
            implemented.
        num_workers: how many subprocesses to use for data
            loading. ``0`` means that the data will be loaded in the main process.
            (default: ``4``).
        seed: random seed, used for reproducing experiments (default: ``0``).
        collate_fn: merges a list of samples to form a
            mini-batch of Tensor(s).  Used when using batched loading from a
            map-style dataset.
    """
    dataset = instantiate(dataset)

    sampler.dataset = dataset
    sampler.micro_batch_size = test_batch_size
    sampler.data_parallel_rank = dist.get_data_parallel_rank()
    sampler.data_parallel_size = dist.get_data_parallel_size()
    sampler.seed = seed
    sampler = instantiate(sampler)

    return DataLoader(
        dataset,
        batch_sampler=sampler,
        num_workers=num_workers,
        persistent_workers=True if num_workers > 0 else False,
        collate_fn=trivial_batch_collator if collate_fn is None else collate_fn,
        **kwargs,
    )


def trivial_batch_collator(batch):
    assert isinstance(batch[0], Instance), "batch[0] must be `instance` for trivial batch collator"
    batch = Instance.stack(batch)
    return batch