cross_attn_lm.py 5.99 KB
Newer Older
yangzhong's avatar
v1.0  
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch.nn as nn
import torch
from .helpers import GatedCrossAttentionBlock
from .utils import getattr_recursive, setattr_recursive


class DecoderLayerWithCrossAttention(nn.Module):
    """
    DecoderLayerWithCrossAttention is a wrapper around the GatedCrossAttentionBlock and DecoderLayer.
    """

    def __init__(
        self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False
    ):
        super().__init__()
        self.gated_cross_attn_layer = gated_cross_attn_layer
        self.decoder_layer = decoder_layer
        self.vis_x = None
        self.media_locations = None
        if self.gated_cross_attn_layer is not None:
            self.gated_cross_attn_layer._use_gradient_checkpointing = (
                gradient_checkpointing
            )
        self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing

    def is_conditioned(self) -> bool:
        """Check whether the layer is conditioned."""
        return self.vis_x is not None and self.media_locations is not None

    # Used this great idea from this implementation of Flamingo (https://github.com/dhansmair/flamingo-mini/)
    def condition_vis_x(self, vis_x):
        self.vis_x = vis_x

    def condition_media_locations(self, media_locations):
        self.media_locations = media_locations

    def forward(
        self,
        lang_x,
        attention_mask=None,
        **decoder_layer_kwargs,
    ):
        # Cross attention
        contains_media = (self.media_locations == 1).any()
        if contains_media and self.gated_cross_attn_layer is not None:
            if self.vis_x is None:
                raise ValueError("vis_x must be conditioned before forward pass")

            if self.media_locations is None:
                raise ValueError(
                    "media_locations must be conditioned before forward pass"
                )

            lang_x = self.gated_cross_attn_layer(
                lang_x,
                self.vis_x,
                media_locations=self.media_locations,
            )

        # Normal decoder layer
        lang_x = self.decoder_layer(
            lang_x, attention_mask=attention_mask, **decoder_layer_kwargs
        )
        return lang_x


class CrossAttentionMixin(nn.Module):
    """
    Mixin to add cross-attention layers to a language model.
    """

    def set_decoder_layers_attr_name(self, decoder_layers_attr_name):
        self.decoder_layers_attr_name = decoder_layers_attr_name

    def _get_decoder_layers(self):
        return getattr_recursive(self, self.decoder_layers_attr_name)

    def _set_decoder_layers(self, value):
        setattr_recursive(self, self.decoder_layers_attr_name, value)

    def init_cross_attention_layers(
        self,
        lang_hidden_size,
        vis_hidden_size,
        cross_attn_every_n_layers,
        gradient_checkpointing,
    ):
        """
        Add gated cross attn layers to the decoder.
        """
        old_decoder_blocks = self._get_decoder_layers()
        self.decoder_block_class = old_decoder_blocks[0].__class__
        self.gated_cross_attn_layers = nn.ModuleList(
            [
                GatedCrossAttentionBlock(
                    dim=lang_hidden_size, dim_visual=vis_hidden_size
                )
                if (layer_idx + 1) % cross_attn_every_n_layers == 0
                else None
                for layer_idx, _ in enumerate(old_decoder_blocks)
            ]
        )
        self._set_decoder_layers(
            nn.ModuleList(
                [
                    DecoderLayerWithCrossAttention(
                        gated_cross_attn_layer, decoder_layer, gradient_checkpointing
                    )
                    for gated_cross_attn_layer, decoder_layer in zip(
                        self.gated_cross_attn_layers, old_decoder_blocks
                    )
                ]
            )
        )
        self.initialized_cross_attention = True

    def _condition_media_before_forward(
        self,
        input_ids: torch.Tensor,
        vision_tokens: torch.Tensor = None,
        past_media_locations: torch.Tensor = None,
        past_vision_tokens: torch.Tensor = None,
        num_beams: int = 1,
    ):
        """Each xattn layer needs to save the vision tokens and the locations of the media tokens in the language sequence"""
        assert (
            self.initialized_cross_attention
        ), "Cross attention layers have not been initialized. "

        # concat with past
        if past_media_locations is not None and past_vision_tokens is not None:
            if vision_tokens is not None:
                updated_vision_tokens = torch.cat(
                    [
                        past_vision_tokens,
                        vision_tokens,
                    ],
                    dim=1,
                )
            else:
                updated_vision_tokens = past_vision_tokens
            updated_media_locations = torch.cat(
                [
                    past_media_locations,
                    input_ids == self.media_token_id,
                ],
                dim=1,
            )
        else:
            updated_vision_tokens = vision_tokens
            updated_media_locations = input_ids == self.media_token_id

        # repeat the vision tokens and media locations for each beam
        updated_vision_tokens = updated_vision_tokens.repeat_interleave(
            num_beams, dim=0
        )
        updated_media_locations = updated_media_locations.repeat_interleave(
            num_beams, dim=0
        )

        # condition
        for layer in self._get_decoder_layers():
            layer.condition_vis_x(updated_vision_tokens)
            layer.condition_media_locations(updated_media_locations)

    def is_conditioned(self) -> bool:
        """Check whether all decoder layers are already conditioned."""
        return all(l.is_conditioned() for l in self._get_decoder_layers())

    def clear_conditioned_layers(self):
        for layer in self._get_decoder_layers():
            layer.condition_vis_x(None)
            layer.condition_media_locations(None)