train.py 14.4 KB
Newer Older
yangzhong's avatar
v1.0  
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
""" Main training script """
import argparse
import os
import torch
import wandb
import functools
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy

from open_flamingo import create_model_and_transforms, SUPPORTED_MODEL_FAMILIES
from open_flamingo.train.data import get_data, SUPPORTED_DATASETS
from open_flamingo.train.distributed import (
    init_distributed_device,
    world_info_from_env,
    get_fsdp_config,
    get_fsdp_checkpoint_config,
)
from open_flamingo.train.train_utils import (
    train_one_epoch,
    random_seed,
    find_most_recent_checkpoint,
    load_checkpoint,
    save_checkpoint,
)
from open_flamingo.train.losses import (
    SUPPORTED_LOSSES,
    get_loss_fn,
)
from transformers import (
    get_constant_schedule_with_warmup,
    get_cosine_schedule_with_warmup,
    get_linear_schedule_with_warmup,
)


def main():
    parser = argparse.ArgumentParser()
    # model configuration args
    parser.add_argument(
        "--model_family", default="flamingo", type=str, choices=SUPPORTED_MODEL_FAMILIES
    )
    parser.add_argument("--vision_encoder_path", default="ViT-SO400M-14-SigLIP-384", type=str)
    parser.add_argument("--vision_encoder_pretrained", default="webli", type=str)
    parser.add_argument("--lm_path", default="facebook/opt-1.3b", type=str)
    parser.add_argument(
        "--tokenizer_path",
        default="facebook/opt-30b",
        type=str,
        help="path to tokenizer",
    )
    parser.add_argument(
        "--cross_attn_every_n_layers",
        type=int,
        default=1,
        help="how often to add a cross-attention layer after each transformer layer",
    )

    # training args
    parser.add_argument(
        "--loss", type=str, choices=SUPPORTED_LOSSES, default="next_token_prediction"
    )
    parser.add_argument(
        "--run_name",
        type=str,
        default="openflamingo3B",
        help="used to name saving directory and wandb run",
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        help="path to checkpoint to resume from, this should contain model, optimizer, and lr_scheduler states. if there exists a checkpoint in the dir named run_name, we will resume from that checkpoint by default.",
        default=None,
    )
    parser.add_argument(
        "--delete_previous_checkpoint",
        action="store_true",
        help="delete previous checkpoint when saving new checkpoint",
    )
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--learning_rate", default=1e-4, type=float)
    parser.add_argument(
        "--lr_scheduler",
        default="constant",
        type=str,
        help="constant, linear, or cosine",
    )
    parser.add_argument("--warmup_steps", default=5000, type=int)
    parser.add_argument("--weight_decay", default=0.1, type=float)
    parser.add_argument(
        "--precision",
        choices=["amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"],
        default="fp32",
        help="Floating point precision.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="whether to train with gradient/activation checkpointing",
    )
    parser.add_argument(
        "--num_epochs",
        type=int,
        default=1,
        help="we define an 'epoch' as a fixed number of examples specified by train_num_samples, not a pass through the entire dataset",
    )
    parser.add_argument("--offline", action="store_true")
    parser.add_argument(
        "--logging_steps", type=int, default=100, help="log loss every n steps"
    )

    # data args
    for dataset_name in SUPPORTED_DATASETS:
        parser.add_argument(f"--batch_size_{dataset_name}", type=int, default=128)
        parser.add_argument(
            f"--loss_multiplier_{dataset_name}", type=float, default=1.0
        )
        parser.add_argument(
            f"--train_num_samples_{dataset_name}",
            type=int,
            default=10000,
            help="Number of samples in an 'epoch' for this dataset. Note that train_num_samples/batch_size must be the same for all datasets.",
        )
        parser.add_argument(
            f"--{dataset_name}_shards",
            type=str,
            default=None,
            help="Should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar. If None, we will not train on this dataset.",
        )
    parser.add_argument("--workers", type=int, default=1)
    parser.add_argument("--dataset_resampled", action="store_true")
    parser.add_argument(
        "--mmc4_textsim_threshold",
        default=0.24,
        type=float,
        help="threshold for filtering images in mmc4 based on image-text similarity",
    )
    parser.add_argument(
        "--mmc4_max_num_images",
        default=6,
        type=int,
        help="max number of images per sequence in mmc4 / chatgpt",
    )
    parser.add_argument(
        "--mmc4_min_num_images",
        default=1,
        type=int,
        help="min number of images per sequence in mmc4 / chatgpt",
    )

    # distributed training args
    parser.add_argument(
        "--dist-url",
        default="env://",
        type=str,
        help="url used to set up distributed training",
    )
    parser.add_argument(
        "--dist-backend", default="nccl", type=str, help="distributed backend"
    )
    parser.add_argument(
        "--horovod",
        default=False,
        action="store_true",
        help="Use horovod for distributed training.",
    )
    parser.add_argument(
        "--no-set-device-rank",
        default=False,
        action="store_true",
        help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).",
    )

    # fsdp args
    parser.add_argument(
        "--fsdp",
        default=False,
        action="store_true",
        help="Use FullyShardedDataParallel for distributed training. Not supported for some models, e.g. OPT.",
    )
    parser.add_argument(
        "--fsdp_sharding_strategy", default="full", type=str, choices=["full", "hybrid", "shard_grad_op", "hybrid_shard_grad_op", "no_shard"]
    )

    # wandb args
    parser.add_argument("--report_to_wandb", default=False, action="store_true")
    parser.add_argument(
        "--wandb_project",
        type=str,
    )
    parser.add_argument(
        "--wandb_entity",
        type=str,
    )
    parser.add_argument(
        "--save_checkpoints_to_wandb",
        default=False,
        action="store_true",
        help="save checkpoints to wandb",
    )
    parser.add_argument(
        '--local-rank',
        default=0,
        type=int,
        help='Local rank for distributed training'
    )
    parser.add_argument(
        '--use_flash_attention_2',
        default=False,  action='store_true',
        help='Use Flash Attention 2.0 for language model.'
    )
    parser.add_argument(
        '--unfreeze_vision_encoder',
        default=False,  action='store_true',
        help='Unfreeze vision encoder during training.'
    )
    parser.add_argument(
        '--vision_encoder_precision',
        default='fp32',
        choices=["bf16", "fp32"],
        help='Precision of the vision encoder during training.'
    )
    parser.add_argument(
        '--cpu_offload_gradients',
        default=False,  action='store_true',
        help='This specifies whether to offload parameters to CPU when not involved in computation. If True, then this offloads gradients to CPU as well, meaning that the optimizer step runs on CPU.'
    )

    args = parser.parse_args()

    # Parse which datasets to train on and which to exclude
    datasets_to_train_on = []
    for dataset_name in SUPPORTED_DATASETS:
        if getattr(args, f"{dataset_name}_shards") is None:
            print(f"Excluding {dataset_name} from training")
            setattr(args, f"train_num_samples_{dataset_name}", 0)
            setattr(args, f"batch_size_{dataset_name}", 0)
        else:
            datasets_to_train_on.append(dataset_name)
            shards_path = getattr(args, f"{dataset_name}_shards")
            if shards_path.startswith("s3"):
                setattr(
                    args,
                    f"{dataset_name}_shards",
                    f"pipe:aws s3 cp {shards_path} -",
                )
    assert len(datasets_to_train_on) > 0, "Must train on at least one dataset"

    # Validate args
    for i in range(len(datasets_to_train_on) - 1):
        assert getattr(args, f"train_num_samples_{datasets_to_train_on[i]}") // getattr(
            args, f"batch_size_{datasets_to_train_on[i]}"
        ) == getattr(
            args, f"train_num_samples_{datasets_to_train_on[i + 1]}"
        ) // getattr(
            args, f"batch_size_{datasets_to_train_on[i + 1]}"
        ), "Number of batches in each dataloader must be the same"

    if args.save_checkpoints_to_wandb and not args.report_to_wandb:
        raise ValueError("save_checkpoints_to_wandb requires report_to_wandb")

    if args.fsdp:
        assert (
            torch.__version__ > "2.0.1"
        ), "FSDP requires torch > 2.0.1"

    # Set up distributed training
    args.local_rank, args.rank, args.world_size = world_info_from_env()
    if args.rank == 0:
        print(f"Initializing distributed training with {args.world_size} GPUs.")
    if args.offline:
        os.environ["WANDB_MODE"] = "offline"
        os.environ["TRANSFORMERS_OFFLINE"] = "1"
    device_id = init_distributed_device(args)

    random_seed(args.seed)

    # Initialize model
    additional_kwargs = (
        {"cross_attn_every_n_layers": args.cross_attn_every_n_layers}
        if args.model_family == "flamingo"
        else {}
    )
    model, image_processor, tokenizer = create_model_and_transforms(
        args.vision_encoder_path,
        args.vision_encoder_pretrained,
        args.lm_path,
        args.tokenizer_path if args.tokenizer_path else args.lm_path,
        model_family=args.model_family,
        use_local_files=args.offline,
        gradient_checkpointing=args.gradient_checkpointing,
        verbose=(args.rank == 0),
        **additional_kwargs,
    )
    random_seed(args.seed, args.rank)

    # Initialize wandb logging
    if args.rank == 0 and args.report_to_wandb:
        wandb.init(
            project=args.wandb_project,
            entity=args.wandb_entity,
            name=args.run_name,
            config=vars(args),
        )

    # Load model checkpoint (on CPU)
    if args.fsdp:
        args.fsdp_checkpoint_config = get_fsdp_checkpoint_config(args)

    # if args do not specify a checkpoint to resume from, resume from most recent checkpoint
    if os.path.exists(f"{args.run_name}") and args.resume_from_checkpoint is None:
        args.resume_from_checkpoint = find_most_recent_checkpoint(args)

    if (
        args.resume_from_checkpoint is not None
    ): 
        resume_from_epoch, checkpoint = load_checkpoint(args, model)
    else:
        resume_from_epoch = 0

    # Initialize gradient checkpointing
    if args.gradient_checkpointing:
        model.init_gradient_checkpointing()

    # Initialize FSDP / DDP, and ensure the model is on GPU
    if args.fsdp:
        auto_wrap_policy = functools.partial(
            lambda_auto_wrap_policy, lambda_fn=model.get_fsdp_lambda_fn()
        )
        wrapper_kwargs = get_fsdp_config(args, device_id)
        distributed_model = FSDP(
            model, auto_wrap_policy=auto_wrap_policy, **wrapper_kwargs
        )
    else:
        model = model.to(device_id)
        distributed_model = DDP(model, device_ids=[device_id])

    # Initialize optimizer
    params_with_wd, params_without_wd = model.group_params_by_weight_decay()
    optimizer = torch.optim.AdamW(
        [
            {"params": params_with_wd, "weight_decay": args.weight_decay},
            {"params": params_without_wd, "weight_decay": 0.0},
        ],
        lr=args.learning_rate,
    )

    # load optimizer checkpoint
    if args.resume_from_checkpoint is not None:
        optim_state_dict = checkpoint["optimizer_state_dict"]
        if args.fsdp:
            # FSDP.set_state_dict_type(
            #     distributed_model,
            #     **args.fsdp_checkpoint_config,
            # )
            optim_state_dict = FSDP.optim_state_dict_to_load(
                model=distributed_model, optim=optimizer, optim_state_dict=optim_state_dict
            )
        optimizer.load_state_dict(optim_state_dict)

    # Initialize datasets
    datasets = [
        get_data(args, image_processor, tokenizer, dataset_name)
        for dataset_name in datasets_to_train_on
    ]
    total_training_steps = (
        getattr(args, f"train_num_samples_{datasets_to_train_on[0]}")
        // (getattr(args, f"batch_size_{datasets_to_train_on[0]}") * args.gradient_accumulation_steps * args.world_size)
    ) * args.num_epochs

    if args.rank == 0:
        print(f"Total training steps: {total_training_steps}")

    # Initialize lr scheduler
    if args.lr_scheduler == "linear":
        lr_scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=args.warmup_steps,
            num_training_steps=total_training_steps,
        )
    elif args.lr_scheduler == "cosine":
        lr_scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=args.warmup_steps,
            num_training_steps=total_training_steps,
        )
    else:
        lr_scheduler = get_constant_schedule_with_warmup(
            optimizer, num_warmup_steps=args.warmup_steps
        )

    # load lr scheduler checkpoint
    if args.resume_from_checkpoint is not None:
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])

    # Initialize the loss fn
    loss_fn = get_loss_fn(args.loss)

    # check wrapping
    if args.rank == 0:
        print(distributed_model)

    # Start training!
    print(f"Start running training on rank {args.rank}.")
    for epoch in range(resume_from_epoch, args.num_epochs):
        for dataset in datasets:
            dataset.set_epoch(epoch)
        train_one_epoch(
            args=args,
            model=distributed_model,
            epoch=epoch,
            datasets=datasets,
            compute_loss_fn=loss_fn,
            tokenizer=tokenizer,
            optimizer=optimizer,
            lr_scheduler=lr_scheduler,
            device_id=device_id,
            wandb=wandb,
        )

        save_checkpoint(distributed_model, optimizer, lr_scheduler, epoch, args)


if __name__ == "__main__":
    main()