tensorboard.md 2.98 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# TensorBoard Usage

TensorBoard provides the visualization and tooling needed for machine learning
experimentation. A full instruction of tensorboard can be found
[here](https://tensorflow.google.cn/tensorboard).

## Highlighted features

DeePMD-kit can now use most of the interesting features enabled by tensorboard!

* **Tracking and visualizing metrics,** such as l2_loss, l2_energy_loss and l2_force_loss
* **Visualizing the model graph** (ops and layers)
* **Viewing histograms of weights, biases, or other tensors as they change over time.**
* **Viewing summaries of trainable viriables**
  
<!-- * **Projecting embeddings to a lower dimensional space.**
* **Precision curves.** -->

## How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log
directory by modifying the the input script, set {ref}`tensorboard <training/tensorboard>` to true in training
subsection will enable the tensorboard data analysis. eg. **water_se_a.json**.

```json
    "training" : {
	"systems":	["../data/"],
	"set_prefix":	"set",    
	"stop_batch":	1000000,
	"batch_size":	1,

	"seed":		1,

	"_comment": " display and restart",
	"_comment": " frequencies counted in batch",
	"disp_file":	"lcurve.out",
	"disp_freq":	100,
	"numb_test":	10,
	"save_freq":	1000,
	"save_ckpt":	"model.ckpt",

	"disp_training":true,
	"time_training":true,
	"tensorboard":	true,
	"tensorboard_log_dir":"log",
	"tensorboard_freq": 1000,
	"profiling":	false,
	"profiling_file":"timeline.json",
	"_comment":	"that's all"
    }
```

Once you have event files, run TensorBoard and provide the log directory. This
should print that TensorBoard has started. Next, connect to http://tensorboard_server_ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run tensorboard --help.
One can easily change the log name with "tensorboard_log_dir" and the sampling frequency with "tensorboard_freq".

```bash
tensorboard --logdir path/to/logs
```

## Examples

### Tracking and visualizing loss metrics(red:train, blue:test)

![ALT](../images/l2_loss.png "l2 loss")

![ALT](../images/l2_energy_loss.png "l2 energy loss")

![ALT](../images/l2_force_loss.png "l2 force loss")

### Visualizing deepmd-kit model graph

![ALT](../images/tensorboard-graph.png "deepmd-kit graph")

### Viewing histograms of weights, biases, or other tensors as they change over time

![ALT](../images/tensorboard-histograms.png "deepmd-kit histograms")

![ALT](../images/tensorboard-distribution.png "deepmd-kit distribution")

### Viewing summaries of trainable variables
![ALT](../images/tensorboard-scalar.png "deepmd-kit scalar")

## Attention

**Allowing the tensorboard analysis will takes extra execution time.**(eg, 15% increasing @Nvidia GTX 1080Ti double precision with default water sample)

**TensorBoard can be used in Google Chrome or Firefox.** Other browsers might work, but there may be bugs or performance issues.