train-input-auto.rst 60.9 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
.. _`model`: 

model: 
    | type: ``dict``
    | argument path: ``model``

    .. _`model/type_map`: 

    type_map: 
        | type: ``list``, optional
        | argument path: ``model/type_map``

        A list of strings. Give the name to each type of atoms. It is noted that the number of atom type of training system must be less than 128 in a GPU environment.

    .. _`model/data_stat_nbatch`: 

    data_stat_nbatch: 
        | type: ``int``, optional, default: ``10``
        | argument path: ``model/data_stat_nbatch``

        The model determines the normalization from the statistics of the data. This key specifies the number of `frames` in each `system` used for statistics.

    .. _`model/data_stat_protect`: 

    data_stat_protect: 
        | type: ``float``, optional, default: ``0.01``
        | argument path: ``model/data_stat_protect``

        Protect parameter for atomic energy regression.

    .. _`model/use_srtab`: 

    use_srtab: 
        | type: ``str``, optional
        | argument path: ``model/use_srtab``

        The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

    .. _`model/smin_alpha`: 

    smin_alpha: 
        | type: ``float``, optional
        | argument path: ``model/smin_alpha``

        The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when `use_srtab` is provided.

    .. _`model/sw_rmin`: 

    sw_rmin: 
        | type: ``float``, optional
        | argument path: ``model/sw_rmin``

        The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when `use_srtab` is provided.

    .. _`model/sw_rmax`: 

    sw_rmax: 
        | type: ``float``, optional
        | argument path: ``model/sw_rmax``

        The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when `use_srtab` is provided.

    .. _`model/type_embedding`: 

    type_embedding: 
        | type: ``dict``, optional
        | argument path: ``model/type_embedding``

        The type embedding.

        .. _`model/type_embedding/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[2, 4, 8]``
            | argument path: ``model/type_embedding/neuron``

            Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

        .. _`model/type_embedding/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/type_embedding/activation_function``

            The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/type_embedding/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/type_embedding/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/type_embedding/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/type_embedding/precision``

            The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/type_embedding/trainable`: 

        trainable: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/type_embedding/trainable``

            If the parameters in the embedding net are trainable

        .. _`model/type_embedding/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/type_embedding/seed``

            Random seed for parameter initialization

    .. _`model/descriptor`: 

    descriptor: 
        | type: ``dict``
        | argument path: ``model/descriptor``

        The descriptor of atomic environment.


        Depending on the value of *type*, different sub args are accepted. 

        .. _`model/descriptor/type`: 

        type:
            | type: ``str`` (flag key)
            | argument path: ``model/descriptor/type`` 
            | possible choices: |code:model/descriptor[loc_frame]|_, |code:model/descriptor[se_e2_a]|_, |code:model/descriptor[se_e2_r]|_, |code:model/descriptor[se_e3]|_, |code:model/descriptor[se_a_tpe]|_, |code:model/descriptor[hybrid]|_

            The type of the descritpor. See explanation below. 

            - `loc_frame`: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.

            - `se_e2_a`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor.

            - `se_e2_r`: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to construct the descriptor.

            - `se_e3`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Three-body embedding will be used by this descriptor.

            - `se_a_tpe`: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Type embedding will be used by this descriptor.

            - `hybrid`: Concatenate of a list of descriptors as a new descriptor.

            .. |code:model/descriptor[loc_frame]| replace:: ``loc_frame``
            .. _`code:model/descriptor[loc_frame]`: `model/descriptor[loc_frame]`_
            .. |code:model/descriptor[se_e2_a]| replace:: ``se_e2_a``
            .. _`code:model/descriptor[se_e2_a]`: `model/descriptor[se_e2_a]`_
            .. |code:model/descriptor[se_e2_r]| replace:: ``se_e2_r``
            .. _`code:model/descriptor[se_e2_r]`: `model/descriptor[se_e2_r]`_
            .. |code:model/descriptor[se_e3]| replace:: ``se_e3``
            .. _`code:model/descriptor[se_e3]`: `model/descriptor[se_e3]`_
            .. |code:model/descriptor[se_a_tpe]| replace:: ``se_a_tpe``
            .. _`code:model/descriptor[se_a_tpe]`: `model/descriptor[se_a_tpe]`_
            .. |code:model/descriptor[hybrid]| replace:: ``hybrid``
            .. _`code:model/descriptor[hybrid]`: `model/descriptor[hybrid]`_

        .. |flag:model/descriptor/type| replace:: *type*
        .. _`flag:model/descriptor/type`: `model/descriptor/type`_


        .. _`model/descriptor[loc_frame]`: 

        When |flag:model/descriptor/type|_ is set to ``loc_frame``: 

        .. _`model/descriptor[loc_frame]/sel_a`: 

        sel_a: 
            | type: ``list``
            | argument path: ``model/descriptor[loc_frame]/sel_a``

            A list of integers. The length of the list should be the same as the number of atom types in the system. `sel_a[i]` gives the selected number of type-i neighbors. The full relative coordinates of the neighbors are used by the descriptor.

        .. _`model/descriptor[loc_frame]/sel_r`: 

        sel_r: 
            | type: ``list``
            | argument path: ``model/descriptor[loc_frame]/sel_r``

            A list of integers. The length of the list should be the same as the number of atom types in the system. `sel_r[i]` gives the selected number of type-i neighbors. Only relative distance of the neighbors are used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius.

        .. _`model/descriptor[loc_frame]/rcut`: 

        rcut: 
            | type: ``float``, optional, default: ``6.0``
            | argument path: ``model/descriptor[loc_frame]/rcut``

            The cut-off radius. The default value is 6.0

        .. _`model/descriptor[loc_frame]/axis_rule`: 

        axis_rule: 
            | type: ``list``
            | argument path: ``model/descriptor[loc_frame]/axis_rule``

            A list of integers. The length should be 6 times of the number of types. 

            - axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.

            - axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.

            - axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the same class and type are sorted according to their relative distance.

            - axis_rule[i*6+3]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.

            - axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom.

            - axis_rule[i*6+5]: class of the atom defining the second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.


        .. _`model/descriptor[se_e2_a]`: 

        When |flag:model/descriptor/type|_ is set to ``se_e2_a`` (or its alias ``se_a``): 

        .. _`model/descriptor[se_e2_a]/sel`: 

        sel: 
            | type: ``list`` | ``str``, optional, default: ``auto``
            | argument path: ``model/descriptor[se_e2_a]/sel``

            This parameter set the number of selected neighbors for each type of atom. It can be:

                - `List[int]`. The length of the list should be the same as the number of atom types in the system. `sel[i]` gives the selected number of type-i neighbors. `sel[i]` is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

                - `str`. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the `sel`. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".

        .. _`model/descriptor[se_e2_a]/rcut`: 

        rcut: 
            | type: ``float``, optional, default: ``6.0``
            | argument path: ``model/descriptor[se_e2_a]/rcut``

            The cut-off radius.

        .. _`model/descriptor[se_e2_a]/rcut_smth`: 

        rcut_smth: 
            | type: ``float``, optional, default: ``0.5``
            | argument path: ``model/descriptor[se_e2_a]/rcut_smth``

            Where to start smoothing. For example the 1/r term is smoothed from `rcut` to `rcut_smth`

        .. _`model/descriptor[se_e2_a]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[10, 20, 40]``
            | argument path: ``model/descriptor[se_e2_a]/neuron``

            Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

        .. _`model/descriptor[se_e2_a]/axis_neuron`: 

        axis_neuron: 
            | type: ``int``, optional, default: ``4``, alias: *n_axis_neuron*
            | argument path: ``model/descriptor[se_e2_a]/axis_neuron``

            Size of the submatrix of G (embedding matrix).

        .. _`model/descriptor[se_e2_a]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/descriptor[se_e2_a]/activation_function``

            The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/descriptor[se_e2_a]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_a]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/descriptor[se_e2_a]/type_one_side`: 

        type_one_side: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_a]/type_one_side``

            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

        .. _`model/descriptor[se_e2_a]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/descriptor[se_e2_a]/precision``

            The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/descriptor[se_e2_a]/trainable`: 

        trainable: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/descriptor[se_e2_a]/trainable``

            If the parameters in the embedding net is trainable

        .. _`model/descriptor[se_e2_a]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/descriptor[se_e2_a]/seed``

            Random seed for parameter initialization

        .. _`model/descriptor[se_e2_a]/exclude_types`: 

        exclude_types: 
            | type: ``list``, optional, default: ``[]``
            | argument path: ``model/descriptor[se_e2_a]/exclude_types``

            The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1.

        .. _`model/descriptor[se_e2_a]/set_davg_zero`: 

        set_davg_zero: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_a]/set_davg_zero``

            Set the normalization average to zero. This option should be set when `atom_ener` in the energy fitting is used


        .. _`model/descriptor[se_e2_r]`: 

        When |flag:model/descriptor/type|_ is set to ``se_e2_r`` (or its alias ``se_r``): 

        .. _`model/descriptor[se_e2_r]/sel`: 

        sel: 
            | type: ``list`` | ``str``, optional, default: ``auto``
            | argument path: ``model/descriptor[se_e2_r]/sel``

            This parameter set the number of selected neighbors for each type of atom. It can be:

                - `List[int]`. The length of the list should be the same as the number of atom types in the system. `sel[i]` gives the selected number of type-i neighbors. `sel[i]` is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

                - `str`. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the `sel`. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".

        .. _`model/descriptor[se_e2_r]/rcut`: 

        rcut: 
            | type: ``float``, optional, default: ``6.0``
            | argument path: ``model/descriptor[se_e2_r]/rcut``

            The cut-off radius.

        .. _`model/descriptor[se_e2_r]/rcut_smth`: 

        rcut_smth: 
            | type: ``float``, optional, default: ``0.5``
            | argument path: ``model/descriptor[se_e2_r]/rcut_smth``

            Where to start smoothing. For example the 1/r term is smoothed from `rcut` to `rcut_smth`

        .. _`model/descriptor[se_e2_r]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[10, 20, 40]``
            | argument path: ``model/descriptor[se_e2_r]/neuron``

            Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

        .. _`model/descriptor[se_e2_r]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/descriptor[se_e2_r]/activation_function``

            The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/descriptor[se_e2_r]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_r]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/descriptor[se_e2_r]/type_one_side`: 

        type_one_side: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_r]/type_one_side``

            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

        .. _`model/descriptor[se_e2_r]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/descriptor[se_e2_r]/precision``

            The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/descriptor[se_e2_r]/trainable`: 

        trainable: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/descriptor[se_e2_r]/trainable``

            If the parameters in the embedding net are trainable

        .. _`model/descriptor[se_e2_r]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/descriptor[se_e2_r]/seed``

            Random seed for parameter initialization

        .. _`model/descriptor[se_e2_r]/exclude_types`: 

        exclude_types: 
            | type: ``list``, optional, default: ``[]``
            | argument path: ``model/descriptor[se_e2_r]/exclude_types``

            The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1.

        .. _`model/descriptor[se_e2_r]/set_davg_zero`: 

        set_davg_zero: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e2_r]/set_davg_zero``

            Set the normalization average to zero. This option should be set when `atom_ener` in the energy fitting is used


        .. _`model/descriptor[se_e3]`: 

        When |flag:model/descriptor/type|_ is set to ``se_e3`` (or its aliases ``se_at``, ``se_a_3be``, ``se_t``): 

        .. _`model/descriptor[se_e3]/sel`: 

        sel: 
            | type: ``list`` | ``str``, optional, default: ``auto``
            | argument path: ``model/descriptor[se_e3]/sel``

            This parameter set the number of selected neighbors for each type of atom. It can be:

                - `List[int]`. The length of the list should be the same as the number of atom types in the system. `sel[i]` gives the selected number of type-i neighbors. `sel[i]` is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

                - `str`. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the `sel`. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".

        .. _`model/descriptor[se_e3]/rcut`: 

        rcut: 
            | type: ``float``, optional, default: ``6.0``
            | argument path: ``model/descriptor[se_e3]/rcut``

            The cut-off radius.

        .. _`model/descriptor[se_e3]/rcut_smth`: 

        rcut_smth: 
            | type: ``float``, optional, default: ``0.5``
            | argument path: ``model/descriptor[se_e3]/rcut_smth``

            Where to start smoothing. For example the 1/r term is smoothed from `rcut` to `rcut_smth`

        .. _`model/descriptor[se_e3]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[10, 20, 40]``
            | argument path: ``model/descriptor[se_e3]/neuron``

            Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

        .. _`model/descriptor[se_e3]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/descriptor[se_e3]/activation_function``

            The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/descriptor[se_e3]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e3]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/descriptor[se_e3]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/descriptor[se_e3]/precision``

            The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/descriptor[se_e3]/trainable`: 

        trainable: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/descriptor[se_e3]/trainable``

            If the parameters in the embedding net are trainable

        .. _`model/descriptor[se_e3]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/descriptor[se_e3]/seed``

            Random seed for parameter initialization

        .. _`model/descriptor[se_e3]/set_davg_zero`: 

        set_davg_zero: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_e3]/set_davg_zero``

            Set the normalization average to zero. This option should be set when `atom_ener` in the energy fitting is used


        .. _`model/descriptor[se_a_tpe]`: 

        When |flag:model/descriptor/type|_ is set to ``se_a_tpe`` (or its alias ``se_a_ebd``): 

        .. _`model/descriptor[se_a_tpe]/sel`: 

        sel: 
            | type: ``list`` | ``str``, optional, default: ``auto``
            | argument path: ``model/descriptor[se_a_tpe]/sel``

            This parameter set the number of selected neighbors for each type of atom. It can be:

                - `List[int]`. The length of the list should be the same as the number of atom types in the system. `sel[i]` gives the selected number of type-i neighbors. `sel[i]` is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

                - `str`. Can be "auto:factor" or "auto". "factor" is a float number larger than 1. This option will automatically determine the `sel`. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the "factor". Finally the number is wraped up to 4 divisible. The option "auto" is equivalent to "auto:1.1".

        .. _`model/descriptor[se_a_tpe]/rcut`: 

        rcut: 
            | type: ``float``, optional, default: ``6.0``
            | argument path: ``model/descriptor[se_a_tpe]/rcut``

            The cut-off radius.

        .. _`model/descriptor[se_a_tpe]/rcut_smth`: 

        rcut_smth: 
            | type: ``float``, optional, default: ``0.5``
            | argument path: ``model/descriptor[se_a_tpe]/rcut_smth``

            Where to start smoothing. For example the 1/r term is smoothed from `rcut` to `rcut_smth`

        .. _`model/descriptor[se_a_tpe]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[10, 20, 40]``
            | argument path: ``model/descriptor[se_a_tpe]/neuron``

            Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

        .. _`model/descriptor[se_a_tpe]/axis_neuron`: 

        axis_neuron: 
            | type: ``int``, optional, default: ``4``, alias: *n_axis_neuron*
            | argument path: ``model/descriptor[se_a_tpe]/axis_neuron``

            Size of the submatrix of G (embedding matrix).

        .. _`model/descriptor[se_a_tpe]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/descriptor[se_a_tpe]/activation_function``

            The activation function in the embedding net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/descriptor[se_a_tpe]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_a_tpe]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/descriptor[se_a_tpe]/type_one_side`: 

        type_one_side: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_a_tpe]/type_one_side``

            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

        .. _`model/descriptor[se_a_tpe]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/descriptor[se_a_tpe]/precision``

            The precision of the embedding net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/descriptor[se_a_tpe]/trainable`: 

        trainable: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/descriptor[se_a_tpe]/trainable``

            If the parameters in the embedding net is trainable

        .. _`model/descriptor[se_a_tpe]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/descriptor[se_a_tpe]/seed``

            Random seed for parameter initialization

        .. _`model/descriptor[se_a_tpe]/exclude_types`: 

        exclude_types: 
            | type: ``list``, optional, default: ``[]``
            | argument path: ``model/descriptor[se_a_tpe]/exclude_types``

            The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1.

        .. _`model/descriptor[se_a_tpe]/set_davg_zero`: 

        set_davg_zero: 
            | type: ``bool``, optional, default: ``False``
            | argument path: ``model/descriptor[se_a_tpe]/set_davg_zero``

            Set the normalization average to zero. This option should be set when `atom_ener` in the energy fitting is used

        .. _`model/descriptor[se_a_tpe]/type_nchanl`: 

        type_nchanl: 
            | type: ``int``, optional, default: ``4``
            | argument path: ``model/descriptor[se_a_tpe]/type_nchanl``

            number of channels for type embedding

        .. _`model/descriptor[se_a_tpe]/type_nlayer`: 

        type_nlayer: 
            | type: ``int``, optional, default: ``2``
            | argument path: ``model/descriptor[se_a_tpe]/type_nlayer``

            number of hidden layers of type embedding net

        .. _`model/descriptor[se_a_tpe]/numb_aparam`: 

        numb_aparam: 
            | type: ``int``, optional, default: ``0``
            | argument path: ``model/descriptor[se_a_tpe]/numb_aparam``

            dimension of atomic parameter. if set to a value > 0, the atomic parameters are embedded.


        .. _`model/descriptor[hybrid]`: 

        When |flag:model/descriptor/type|_ is set to ``hybrid``: 

        .. _`model/descriptor[hybrid]/list`: 

        list: 
            | type: ``list``
            | argument path: ``model/descriptor[hybrid]/list``

            A list of descriptor definitions

    .. _`model/fitting_net`: 

    fitting_net: 
        | type: ``dict``
        | argument path: ``model/fitting_net``

        The fitting of physical properties.


        Depending on the value of *type*, different sub args are accepted. 

        .. _`model/fitting_net/type`: 

        type:
            | type: ``str`` (flag key), default: ``ener``
            | argument path: ``model/fitting_net/type`` 
            | possible choices: |code:model/fitting_net[ener]|_, |code:model/fitting_net[dipole]|_, |code:model/fitting_net[polar]|_

            The type of the fitting. See explanation below. 

            - `ener`: Fit an energy model (potential energy surface).

            - `dipole`: Fit an atomic dipole model. Global dipole labels or atomic dipole labels for all the selected atoms (see `sel_type`) should be provided by `dipole.npy` in each data system. The file either has number of frames lines and 3 times of number of selected atoms columns, or has number of frames lines and 3 columns. See `loss` parameter.

            - `polar`: Fit an atomic polarizability model. Global polarizazbility labels or atomic polarizability labels for all the selected atoms (see `sel_type`) should be provided by `polarizability.npy` in each data system. The file eith has number of frames lines and 9 times of number of selected atoms columns, or has number of frames lines and 9 columns. See `loss` parameter.



            .. |code:model/fitting_net[ener]| replace:: ``ener``
            .. _`code:model/fitting_net[ener]`: `model/fitting_net[ener]`_
            .. |code:model/fitting_net[dipole]| replace:: ``dipole``
            .. _`code:model/fitting_net[dipole]`: `model/fitting_net[dipole]`_
            .. |code:model/fitting_net[polar]| replace:: ``polar``
            .. _`code:model/fitting_net[polar]`: `model/fitting_net[polar]`_

        .. |flag:model/fitting_net/type| replace:: *type*
        .. _`flag:model/fitting_net/type`: `model/fitting_net/type`_


        .. _`model/fitting_net[ener]`: 

        When |flag:model/fitting_net/type|_ is set to ``ener``: 

        .. _`model/fitting_net[ener]/numb_fparam`: 

        numb_fparam: 
            | type: ``int``, optional, default: ``0``
            | argument path: ``model/fitting_net[ener]/numb_fparam``

            The dimension of the frame parameter. If set to >0, file `fparam.npy` should be included to provided the input fparams.

        .. _`model/fitting_net[ener]/numb_aparam`: 

        numb_aparam: 
            | type: ``int``, optional, default: ``0``
            | argument path: ``model/fitting_net[ener]/numb_aparam``

            The dimension of the atomic parameter. If set to >0, file `aparam.npy` should be included to provided the input aparams.

        .. _`model/fitting_net[ener]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[120, 120, 120]``, alias: *n_neuron*
            | argument path: ``model/fitting_net[ener]/neuron``

            The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

        .. _`model/fitting_net[ener]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/fitting_net[ener]/activation_function``

            The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/fitting_net[ener]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/fitting_net[ener]/precision``

            The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/fitting_net[ener]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[ener]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/fitting_net[ener]/trainable`: 

        trainable: 
            | type: ``list`` | ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[ener]/trainable``

            Whether the parameters in the fitting net are trainable. This option can be

            - bool: True if all parameters of the fitting net are trainable, False otherwise.

            - list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers followed by a output layer, the length of tihs list should be equal to len(`neuron`)+1.

        .. _`model/fitting_net[ener]/rcond`: 

        rcond: 
            | type: ``float``, optional, default: ``0.001``
            | argument path: ``model/fitting_net[ener]/rcond``

            The condition number used to determine the inital energy shift for each type of atoms.

        .. _`model/fitting_net[ener]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/fitting_net[ener]/seed``

            Random seed for parameter initialization of the fitting net

        .. _`model/fitting_net[ener]/atom_ener`: 

        atom_ener: 
            | type: ``list``, optional, default: ``[]``
            | argument path: ``model/fitting_net[ener]/atom_ener``

            Specify the atomic energy in vacuum for each type


        .. _`model/fitting_net[dipole]`: 

        When |flag:model/fitting_net/type|_ is set to ``dipole``: 

        .. _`model/fitting_net[dipole]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[120, 120, 120]``, alias: *n_neuron*
            | argument path: ``model/fitting_net[dipole]/neuron``

            The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

        .. _`model/fitting_net[dipole]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/fitting_net[dipole]/activation_function``

            The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/fitting_net[dipole]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[dipole]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/fitting_net[dipole]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/fitting_net[dipole]/precision``

            The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/fitting_net[dipole]/sel_type`: 

        sel_type: 
            | type: ``list`` | ``int`` | ``NoneType``, optional, alias: *dipole_type*
            | argument path: ``model/fitting_net[dipole]/sel_type``

            The atom types for which the atomic dipole will be provided. If not set, all types will be selected.

        .. _`model/fitting_net[dipole]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/fitting_net[dipole]/seed``

            Random seed for parameter initialization of the fitting net


        .. _`model/fitting_net[polar]`: 

        When |flag:model/fitting_net/type|_ is set to ``polar``: 

        .. _`model/fitting_net[polar]/neuron`: 

        neuron: 
            | type: ``list``, optional, default: ``[120, 120, 120]``, alias: *n_neuron*
            | argument path: ``model/fitting_net[polar]/neuron``

            The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

        .. _`model/fitting_net[polar]/activation_function`: 

        activation_function: 
            | type: ``str``, optional, default: ``tanh``
            | argument path: ``model/fitting_net[polar]/activation_function``

            The activation function in the fitting net. Supported activation functions are "relu", "relu6", "softplus", "sigmoid", "tanh", "gelu".

        .. _`model/fitting_net[polar]/resnet_dt`: 

        resnet_dt: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[polar]/resnet_dt``

            Whether to use a "Timestep" in the skip connection

        .. _`model/fitting_net[polar]/precision`: 

        precision: 
            | type: ``str``, optional, default: ``float64``
            | argument path: ``model/fitting_net[polar]/precision``

            The precision of the fitting net parameters, supported options are "default", "float16", "float32", "float64".

        .. _`model/fitting_net[polar]/fit_diag`: 

        fit_diag: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[polar]/fit_diag``

            Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

        .. _`model/fitting_net[polar]/scale`: 

        scale: 
            | type: ``float`` | ``list``, optional, default: ``1.0``
            | argument path: ``model/fitting_net[polar]/scale``

            The output of the fitting net (polarizability matrix) will be scaled by ``scale``

        .. _`model/fitting_net[polar]/shift_diag`: 

        shift_diag: 
            | type: ``bool``, optional, default: ``True``
            | argument path: ``model/fitting_net[polar]/shift_diag``

            Whether to shift the diagonal of polar, which is beneficial to training. Default is true.

        .. _`model/fitting_net[polar]/sel_type`: 

        sel_type: 
            | type: ``list`` | ``int`` | ``NoneType``, optional, alias: *pol_type*
            | argument path: ``model/fitting_net[polar]/sel_type``

            The atom types for which the atomic polarizability will be provided. If not set, all types will be selected.

        .. _`model/fitting_net[polar]/seed`: 

        seed: 
            | type: ``int`` | ``NoneType``, optional
            | argument path: ``model/fitting_net[polar]/seed``

            Random seed for parameter initialization of the fitting net

    .. _`model/modifier`: 

    modifier: 
        | type: ``dict``, optional
        | argument path: ``model/modifier``

        The modifier of model output.


        Depending on the value of *type*, different sub args are accepted. 

        .. _`model/modifier/type`: 

        type:
            | type: ``str`` (flag key)
            | argument path: ``model/modifier/type`` 
            | possible choices: |code:model/modifier[dipole_charge]|_

            The type of modifier. See explanation below.

            -`dipole_charge`: Use WFCC to model the electronic structure of the system. Correct the long-range interaction

            .. |code:model/modifier[dipole_charge]| replace:: ``dipole_charge``
            .. _`code:model/modifier[dipole_charge]`: `model/modifier[dipole_charge]`_

        .. |flag:model/modifier/type| replace:: *type*
        .. _`flag:model/modifier/type`: `model/modifier/type`_


        .. _`model/modifier[dipole_charge]`: 

        When |flag:model/modifier/type|_ is set to ``dipole_charge``: 

        .. _`model/modifier[dipole_charge]/model_name`: 

        model_name: 
            | type: ``str``
            | argument path: ``model/modifier[dipole_charge]/model_name``

            The name of the frozen dipole model file.

        .. _`model/modifier[dipole_charge]/model_charge_map`: 

        model_charge_map: 
            | type: ``list``
            | argument path: ``model/modifier[dipole_charge]/model_charge_map``

            The charge of the WFCC. The list length should be the same as the `sel_type <model/fitting_net[dipole]/sel_type_>`_. 

        .. _`model/modifier[dipole_charge]/sys_charge_map`: 

        sys_charge_map: 
            | type: ``list``
            | argument path: ``model/modifier[dipole_charge]/sys_charge_map``

            The charge of real atoms. The list length should be the same as the `type_map <model/type_map_>`_

        .. _`model/modifier[dipole_charge]/ewald_beta`: 

        ewald_beta: 
            | type: ``float``, optional, default: ``0.4``
            | argument path: ``model/modifier[dipole_charge]/ewald_beta``

            The splitting parameter of Ewald sum. Unit is A^-1

        .. _`model/modifier[dipole_charge]/ewald_h`: 

        ewald_h: 
            | type: ``float``, optional, default: ``1.0``
            | argument path: ``model/modifier[dipole_charge]/ewald_h``

            The grid spacing of the FFT grid. Unit is A

    .. _`model/compress`: 

    compress: 
        | type: ``dict``, optional
        | argument path: ``model/compress``

        Model compression configurations


        Depending on the value of *type*, different sub args are accepted. 

        .. _`model/compress/type`: 

        type:
            | type: ``str`` (flag key), default: ``se_e2_a``
            | argument path: ``model/compress/type`` 
            | possible choices: |code:model/compress[se_e2_a]|_

            The type of model compression, which should be consistent with the descriptor type.

            .. |code:model/compress[se_e2_a]| replace:: ``se_e2_a``
            .. _`code:model/compress[se_e2_a]`: `model/compress[se_e2_a]`_

        .. |flag:model/compress/type| replace:: *type*
        .. _`flag:model/compress/type`: `model/compress/type`_


        .. _`model/compress[se_e2_a]`: 

        When |flag:model/compress/type|_ is set to ``se_e2_a`` (or its alias ``se_a``): 

        .. _`model/compress[se_e2_a]/compress`: 

        compress: 
            | type: ``bool``
            | argument path: ``model/compress[se_e2_a]/compress``

            The name of the frozen model file.

        .. _`model/compress[se_e2_a]/model_file`: 

        model_file: 
            | type: ``str``
            | argument path: ``model/compress[se_e2_a]/model_file``

            The input model file, which will be compressed by the DeePMD-kit.

        .. _`model/compress[se_e2_a]/table_config`: 

        table_config: 
            | type: ``list``
            | argument path: ``model/compress[se_e2_a]/table_config``

            The arguments of model compression, including extrapolate(scale of model extrapolation), stride(uniform stride of tabulation's first and second table), and frequency(frequency of tabulation overflow check).

        .. _`model/compress[se_e2_a]/min_nbor_dist`: 

        min_nbor_dist: 
            | type: ``float``
            | argument path: ``model/compress[se_e2_a]/min_nbor_dist``

            The nearest distance between neighbor atoms saved in the frozen model.


.. _`loss`: 

loss: 
    | type: ``dict``, optional
    | argument path: ``loss``

    The definition of loss function. The loss type should be set to `tensor`, `ener` or left unset.
    \.


    Depending on the value of *type*, different sub args are accepted. 

    .. _`loss/type`: 

    type:
        | type: ``str`` (flag key), default: ``ener``
        | argument path: ``loss/type`` 
        | possible choices: |code:loss[ener]|_, |code:loss[tensor]|_

        The type of the loss. When the fitting type is `ener`, the loss type should be set to `ener` or left unset. When the fitting type is `dipole` or `polar`, the loss type should be set to `tensor`. 
        \.

        .. |code:loss[ener]| replace:: ``ener``
        .. _`code:loss[ener]`: `loss[ener]`_
        .. |code:loss[tensor]| replace:: ``tensor``
        .. _`code:loss[tensor]`: `loss[tensor]`_

    .. |flag:loss/type| replace:: *type*
    .. _`flag:loss/type`: `loss/type`_


    .. _`loss[ener]`: 

    When |flag:loss/type|_ is set to ``ener``: 

    .. _`loss[ener]/start_pref_e`: 

    start_pref_e: 
        | type: ``float`` | ``int``, optional, default: ``0.02``
        | argument path: ``loss[ener]/start_pref_e``

        The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the energy label should be provided by file energy.npy in each data system. If both start_pref_energy and limit_pref_energy are set to 0, then the energy will be ignored.

    .. _`loss[ener]/limit_pref_e`: 

    limit_pref_e: 
        | type: ``float`` | ``int``, optional, default: ``1.0``
        | argument path: ``loss[ener]/limit_pref_e``

        The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

    .. _`loss[ener]/start_pref_f`: 

    start_pref_f: 
        | type: ``float`` | ``int``, optional, default: ``1000``
        | argument path: ``loss[ener]/start_pref_f``

        The prefactor of force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the force label should be provided by file force.npy in each data system. If both start_pref_force and limit_pref_force are set to 0, then the force will be ignored.

    .. _`loss[ener]/limit_pref_f`: 

    limit_pref_f: 
        | type: ``float`` | ``int``, optional, default: ``1.0``
        | argument path: ``loss[ener]/limit_pref_f``

        The prefactor of force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

    .. _`loss[ener]/start_pref_v`: 

    start_pref_v: 
        | type: ``float`` | ``int``, optional, default: ``0.0``
        | argument path: ``loss[ener]/start_pref_v``

        The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial and limit_pref_virial are set to 0, then the virial will be ignored.

    .. _`loss[ener]/limit_pref_v`: 

    limit_pref_v: 
        | type: ``float`` | ``int``, optional, default: ``0.0``
        | argument path: ``loss[ener]/limit_pref_v``

        The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

    .. _`loss[ener]/start_pref_ae`: 

    start_pref_ae: 
        | type: ``float`` | ``int``, optional, default: ``0.0``
        | argument path: ``loss[ener]/start_pref_ae``

        The prefactor of atom_ener loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_ener label should be provided by file atom_ener.npy in each data system. If both start_pref_atom_ener and limit_pref_atom_ener are set to 0, then the atom_ener will be ignored.

    .. _`loss[ener]/limit_pref_ae`: 

    limit_pref_ae: 
        | type: ``float`` | ``int``, optional, default: ``0.0``
        | argument path: ``loss[ener]/limit_pref_ae``

        The prefactor of atom_ener loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

    .. _`loss[ener]/relative_f`: 

    relative_f: 
        | type: ``float`` | ``NoneType``, optional
        | argument path: ``loss[ener]/relative_f``

        If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by `relative_f`, i.e. DF_i / ( || F || + relative_f ) with DF denoting the difference between prediction and label and || F || denoting the L2 norm of the label.


    .. _`loss[tensor]`: 

    When |flag:loss/type|_ is set to ``tensor``: 

    .. _`loss[tensor]/pref`: 

    pref: 
        | type: ``float`` | ``int``
        | argument path: ``loss[tensor]/pref``

        The prefactor of the weight of global loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to global label, i.e. 'polarizability.npy` or `dipole.npy`, whose shape should be #frames x [9 or 3]. If it's larger than 0.0, this npy should be included.

    .. _`loss[tensor]/pref_atomic`: 

    pref_atomic: 
        | type: ``float`` | ``int``
        | argument path: ``loss[tensor]/pref_atomic``

        The prefactor of the weight of atomic loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to atomic label, i.e. `atomic_polarizability.npy` or `atomic_dipole.npy`, whose shape should be #frames x ([9 or 3] x #selected atoms). If it's larger than 0.0, this npy should be included. Both `pref` and `pref_atomic` should be provided, and either can be set to 0.0.


.. _`learning_rate`: 

learning_rate: 
    | type: ``dict``
    | argument path: ``learning_rate``

    The definitio of learning rate


    Depending on the value of *type*, different sub args are accepted. 

    .. _`learning_rate/type`: 

    type:
        | type: ``str`` (flag key), default: ``exp``
        | argument path: ``learning_rate/type`` 
        | possible choices: |code:learning_rate[exp]|_

        The type of the learning rate.

        .. |code:learning_rate[exp]| replace:: ``exp``
        .. _`code:learning_rate[exp]`: `learning_rate[exp]`_

    .. |flag:learning_rate/type| replace:: *type*
    .. _`flag:learning_rate/type`: `learning_rate/type`_


    .. _`learning_rate[exp]`: 

    When |flag:learning_rate/type|_ is set to ``exp``: 

    .. _`learning_rate[exp]/start_lr`: 

    start_lr: 
        | type: ``float``, optional, default: ``0.001``
        | argument path: ``learning_rate[exp]/start_lr``

        The learning rate the start of the training.

    .. _`learning_rate[exp]/stop_lr`: 

    stop_lr: 
        | type: ``float``, optional, default: ``1e-08``
        | argument path: ``learning_rate[exp]/stop_lr``

        The desired learning rate at the end of the training.

    .. _`learning_rate[exp]/decay_steps`: 

    decay_steps: 
        | type: ``int``, optional, default: ``5000``
        | argument path: ``learning_rate[exp]/decay_steps``

        The learning rate is decaying every this number of training steps.


.. _`training`: 

training: 
    | type: ``dict``
    | argument path: ``training``

    The training options.

    .. _`training/training_data`: 

    training_data: 
        | type: ``dict``
        | argument path: ``training/training_data``

        Configurations of training data.

        .. _`training/training_data/systems`: 

        systems: 
            | type: ``list`` | ``str``
            | argument path: ``training/training_data/systems``

            The data systems for training. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.

        .. _`training/training_data/set_prefix`: 

        set_prefix: 
            | type: ``str``, optional, default: ``set``
            | argument path: ``training/training_data/set_prefix``

            The prefix of the sets in the `systems <training/training_data/systems_>`_.

        .. _`training/training_data/batch_size`: 

        batch_size: 
            | type: ``list`` | ``int`` | ``str``, optional, default: ``auto``
            | argument path: ``training/training_data/batch_size``

            This key can be 

            - list: the length of which is the same as the `systems <training/training_data/systems_>`_. The batch size of each system is given by the elements of the list.

            - int: all `systems <training/training_data/systems_>`_ use the same batch size.

            - string "auto": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.

            - string "auto:N": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.

        .. _`training/training_data/auto_prob`: 

        auto_prob: 
            | type: ``str``, optional, default: ``prob_sys_size``, alias: *auto_prob_style*
            | argument path: ``training/training_data/auto_prob``

            Determine the probability of systems automatically. The method is assigned by this key and can be

            - "prob_uniform"  : the probability all the systems are equal, namely 1.0/self.get_nsystems()

            - "prob_sys_size" : the probability of a system is proportional to the number of batches in the system

            - "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." : the list of systems is devided into blocks. A block is specified by `stt_idx:end_idx:weight`, where `stt_idx` is the starting index of the system, `end_idx` is then ending (not including) index of the system, the probabilities of the systems in this block sums up to `weight`, and the relatively probabilities within this block is proportional to the number of batches in the system.

        .. _`training/training_data/sys_probs`: 

        sys_probs: 
            | type: ``list`` | ``NoneType``, optional, default: ``None``, alias: *sys_weights*
            | argument path: ``training/training_data/sys_probs``

            A list of float if specified. Should be of the same length as `systems`, specifying the probability of each system.

    .. _`training/validation_data`: 

    validation_data: 
        | type: ``dict`` | ``NoneType``, optional, default: ``None``
        | argument path: ``training/validation_data``

        Configurations of validation data. Similar to that of training data, except that a `numb_btch` argument may be configured

        .. _`training/validation_data/systems`: 

        systems: 
            | type: ``list`` | ``str``
            | argument path: ``training/validation_data/systems``

            The data systems for validation. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.

        .. _`training/validation_data/set_prefix`: 

        set_prefix: 
            | type: ``str``, optional, default: ``set``
            | argument path: ``training/validation_data/set_prefix``

            The prefix of the sets in the `systems <training/validation_data/systems_>`_.

        .. _`training/validation_data/batch_size`: 

        batch_size: 
            | type: ``list`` | ``int`` | ``str``, optional, default: ``auto``
            | argument path: ``training/validation_data/batch_size``

            This key can be 

            - list: the length of which is the same as the `systems <training/validation_data/systems_>`_. The batch size of each system is given by the elements of the list.

            - int: all `systems <training/validation_data/systems_>`_ use the same batch size.

            - string "auto": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.

            - string "auto:N": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.

        .. _`training/validation_data/auto_prob`: 

        auto_prob: 
            | type: ``str``, optional, default: ``prob_sys_size``, alias: *auto_prob_style*
            | argument path: ``training/validation_data/auto_prob``

            Determine the probability of systems automatically. The method is assigned by this key and can be

            - "prob_uniform"  : the probability all the systems are equal, namely 1.0/self.get_nsystems()

            - "prob_sys_size" : the probability of a system is proportional to the number of batches in the system

            - "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." : the list of systems is devided into blocks. A block is specified by `stt_idx:end_idx:weight`, where `stt_idx` is the starting index of the system, `end_idx` is then ending (not including) index of the system, the probabilities of the systems in this block sums up to `weight`, and the relatively probabilities within this block is proportional to the number of batches in the system.

        .. _`training/validation_data/sys_probs`: 

        sys_probs: 
            | type: ``list`` | ``NoneType``, optional, default: ``None``, alias: *sys_weights*
            | argument path: ``training/validation_data/sys_probs``

            A list of float if specified. Should be of the same length as `systems`, specifying the probability of each system.

        .. _`training/validation_data/numb_btch`: 

        numb_btch: 
            | type: ``int``, optional, default: ``1``, alias: *numb_batch*
            | argument path: ``training/validation_data/numb_btch``

            An integer that specifies the number of systems to be sampled for each validation period.

    .. _`training/numb_steps`: 

    numb_steps: 
        | type: ``int``, alias: *stop_batch*
        | argument path: ``training/numb_steps``

        Number of training batch. Each training uses one batch of data.

    .. _`training/seed`: 

    seed: 
        | type: ``int`` | ``NoneType``, optional
        | argument path: ``training/seed``

        The random seed for getting frames from the training data set.

    .. _`training/disp_file`: 

    disp_file: 
        | type: ``str``, optional, default: ``lcurve.out``
        | argument path: ``training/disp_file``

        The file for printing learning curve.

    .. _`training/disp_freq`: 

    disp_freq: 
        | type: ``int``, optional, default: ``1000``
        | argument path: ``training/disp_freq``

        The frequency of printing learning curve.

    .. _`training/numb_test`: 

    numb_test: 
        | type: ``list`` | ``int`` | ``str``, optional, default: ``1``
        | argument path: ``training/numb_test``

        Number of frames used for the test during training.

    .. _`training/save_freq`: 

    save_freq: 
        | type: ``int``, optional, default: ``1000``
        | argument path: ``training/save_freq``

        The frequency of saving check point.

    .. _`training/save_ckpt`: 

    save_ckpt: 
        | type: ``str``, optional, default: ``model.ckpt``
        | argument path: ``training/save_ckpt``

        The file name of saving check point.

    .. _`training/disp_training`: 

    disp_training: 
        | type: ``bool``, optional, default: ``True``
        | argument path: ``training/disp_training``

        Displaying verbose information during training.

    .. _`training/time_training`: 

    time_training: 
        | type: ``bool``, optional, default: ``True``
        | argument path: ``training/time_training``

        Timing durining training.

    .. _`training/profiling`: 

    profiling: 
        | type: ``bool``, optional, default: ``False``
        | argument path: ``training/profiling``

        Profiling during training.

    .. _`training/profiling_file`: 

    profiling_file: 
        | type: ``str``, optional, default: ``timeline.json``
        | argument path: ``training/profiling_file``

        Output file for profiling.

    .. _`training/tensorboard`: 

    tensorboard: 
        | type: ``bool``, optional, default: ``False``
        | argument path: ``training/tensorboard``

        Enable tensorboard

    .. _`training/tensorboard_log_dir`: 

    tensorboard_log_dir: 
        | type: ``str``, optional, default: ``log``
        | argument path: ``training/tensorboard_log_dir``

        The log directory of tensorboard outputs

    .. _`training/tensorboard_freq`: 

    tensorboard_freq: 
        | type: ``int``, optional, default: ``1``
        | argument path: ``training/tensorboard_freq``

        The frequency of writing tensorboard events.