tabulate.py 26 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import logging
import numpy as np
import deepmd
from typing import Callable
from typing import Tuple, List, Dict
from functools import lru_cache
from scipy.special import comb
from deepmd.env import tf
from deepmd.env import op_module
from deepmd.common import ACTIVATION_FN_DICT
from deepmd.utils.graph import get_tensor_by_name_from_graph, load_graph_def 
from deepmd.utils.graph import get_embedding_net_nodes_from_graph_def
from deepmd.descriptor import Descriptor

log = logging.getLogger(__name__)

class DPTabulate():
    """
    Class for tabulation.

    Compress a model, which including tabulating the embedding-net. 
    The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The first table takes the stride(parameter) as it\'s uniform stride, while the second table takes 10 * stride as it\s uniform stride 
    The range of the first table is automatically detected by deepmd-kit, while the second table ranges from the first table\'s upper boundary(upper) to the extrapolate(parameter) * upper.

    Parameters
    ----------
    descrpt
            Descriptor of the original model
    neuron
            Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`
    model_file
            The frozen model
    type_one_side
            Try to build N_types tables. Otherwise, building N_types^2 tables
    exclude_types : List[List[int]]
            The excluded pairs of types which have no interaction with each other.
            For example, `[[0, 1]]` means no interaction between type 0 and type 1.
    activation_function
            The activation function in the embedding net. Supported options are {"tanh","gelu"} in common.ACTIVATION_FN_DICT.
    suffix : str, optional
            The suffix of the scope
    """
    def __init__(self,
                 descrpt : Descriptor,
                 neuron : List[int],
                 model_file : str,
                 type_one_side : bool = False,
                 exclude_types : List[List[int]] = [],
                 activation_fn : Callable[[tf.Tensor], tf.Tensor] = tf.nn.tanh,
                 suffix : str = "",
                 ) -> None:
        """
        Constructor
        """
        self.descrpt = descrpt
        self.neuron = neuron
        self.model_file = model_file
        self.type_one_side = type_one_side
        self.exclude_types = exclude_types
        self.suffix = suffix
        
        # functype
        if activation_fn == ACTIVATION_FN_DICT["tanh"]:
            self.functype = 1
        elif activation_fn == ACTIVATION_FN_DICT["gelu"]:
            self.functype = 2
        elif activation_fn == ACTIVATION_FN_DICT["relu"]:
            self.functype = 3
        elif activation_fn == ACTIVATION_FN_DICT["relu6"]:
            self.functype = 4
        elif activation_fn == ACTIVATION_FN_DICT["softplus"]:
            self.functype = 5
        elif activation_fn == ACTIVATION_FN_DICT["sigmoid"]:
            self.functype = 6
        else:
            raise RuntimeError("Unknown actication function type!")
        self.activation_fn = activation_fn

        self.graph, self.graph_def = load_graph_def(self.model_file)
        #self.sess = tf.Session(graph = self.graph)

        self.sub_graph, self.sub_graph_def = self._load_sub_graph()
        self.sub_sess = tf.Session(graph = self.sub_graph)

        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            self.sel_a = self.descrpt.sel_r
            self.rcut = self.descrpt.rcut
            self.rcut_smth = self.descrpt.rcut_smth
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            self.sel_a = self.descrpt.sel_a
            self.rcut = self.descrpt.rcut_r
            self.rcut_smth = self.descrpt.rcut_r_smth
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            self.sel_a = self.descrpt.sel_a
            self.rcut = self.descrpt.rcut_r
            self.rcut_smth = self.descrpt.rcut_r_smth
        else:
            raise RuntimeError("Unsupported descriptor")

        self.davg = get_tensor_by_name_from_graph(self.graph, f'descrpt_attr{self.suffix}/t_avg')
        self.dstd = get_tensor_by_name_from_graph(self.graph, f'descrpt_attr{self.suffix}/t_std')
        self.ntypes = get_tensor_by_name_from_graph(self.graph, 'descrpt_attr/ntypes')

        self.embedding_net_nodes = get_embedding_net_nodes_from_graph_def(self.graph_def, suffix=self.suffix)

        # move it to the descriptor class
        # for tt in self.exclude_types:
        #     if (tt[0] not in range(self.ntypes)) or (tt[1] not in range(self.ntypes)):
        #         raise RuntimeError("exclude types" + str(tt) + " must within the number of atomic types " + str(self.ntypes) + "!")
        # if (self.ntypes * self.ntypes - len(self.exclude_types) == 0):
        #     raise RuntimeError("empty embedding-net are not supported in model compression!")
        self.layer_size = self._get_layer_size()
        self.table_size = self._get_table_size()

        self.bias = self._get_bias()
        self.matrix = self._get_matrix()

        self.data_type  = self._get_data_type()
        self.last_layer_size = self._get_last_layer_size()

        self.data = {}

        self.upper = {}
        self.lower = {}


    def build(self, 
              min_nbor_dist : float,
              extrapolate : float, 
              stride0 : float, 
              stride1 : float) -> Tuple[Dict[str, int], Dict[str, int]]:
        """
        Build the tables for model compression

        Parameters
        ----------
        min_nbor_dist
                The nearest distance between neighbor atoms
        extrapolate
                The scale of model extrapolation
        stride0
                The uniform stride of the first table
        stride1
                The uniform stride of the second table
        neuron
            Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`

        Returns
        ----------
        lower : dict[str, int]
                The lower boundary of environment matrix by net
        upper : dict[str, int]
                The upper boundary of environment matrix by net
        """
        # tabulate range [lower, upper] with stride0 'stride0'
        lower, upper = self._get_env_mat_range(min_nbor_dist)
        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            for ii in range(self.table_size):
                if (self.type_one_side and not self._all_excluded(ii)) or (not self.type_one_side and (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types):
                    if self.type_one_side:
                        net = "filter_-1_net_" + str(ii)
                        # upper and lower should consider all types which are not excluded and sel>0
                        idx = [(type_i, ii) not in self.exclude_types and self.sel_a[type_i] > 0 for type_i in range(self.ntypes)]
                        uu = np.max(upper[idx])
                        ll = np.min(lower[idx])
                    else:
                        ielement = ii // self.ntypes
                        net = "filter_" + str(ielement) + "_net_" + str(ii % self.ntypes)
                        uu = upper[ielement]
                        ll = lower[ielement]
                    xx = np.arange(ll, uu, stride0, dtype = self.data_type)
                    xx = np.append(xx, np.arange(uu, extrapolate * uu, stride1, dtype = self.data_type))
                    xx = np.append(xx, np.array([extrapolate * uu], dtype = self.data_type))
                    nspline = ((uu - ll) / stride0 + (extrapolate * uu - uu) / stride1).astype(int)
                    self._build_lower(net, xx, ii, uu, ll, stride0, stride1, extrapolate, nspline)
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            xx_all = []
            for ii in range(self.ntypes):
                xx = np.arange(extrapolate * lower[ii], lower[ii], stride1, dtype = self.data_type)
                xx = np.append(xx, np.arange(lower[ii], upper[ii], stride0, dtype = self.data_type))
                xx = np.append(xx, np.arange(upper[ii], extrapolate * upper[ii], stride1, dtype = self.data_type))
                xx = np.append(xx, np.array([extrapolate * upper[ii]], dtype = self.data_type))
                xx_all.append(xx)
            nspline = ((upper - lower) / stride0 + 2 * ((extrapolate * upper - upper) / stride1)).astype(int)
            idx = 0
            for ii in range(self.ntypes):
                for jj in range(ii, self.ntypes):
                    net = "filter_" + str(ii) + "_net_" + str(jj)
                    self._build_lower(net, xx_all[ii], idx, upper[ii], lower[ii], stride0, stride1, extrapolate, nspline[ii])
                    idx += 1
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            for ii in range(self.table_size):
                if (self.type_one_side and not self._all_excluded(ii)) or (not self.type_one_side and (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types):
                    if self.type_one_side:
                        net = "filter_-1_net_" + str(ii)
                        # upper and lower should consider all types which are not excluded and sel>0
                        idx = [(type_i, ii) not in self.exclude_types and self.sel_a[type_i] > 0 for type_i in range(self.ntypes)]
                        uu = np.max(upper[idx])
                        ll = np.min(lower[idx])
                    else:
                        ielement = ii // self.ntypes
                        net = "filter_" + str(ielement) + "_net_" + str(ii % self.ntypes)
                        uu = upper[ielement]
                        ll = lower[ielement]
                    xx = np.arange(ll, uu, stride0, dtype = self.data_type)
                    xx = np.append(xx, np.arange(uu, extrapolate * uu, stride1, dtype = self.data_type))
                    xx = np.append(xx, np.array([extrapolate * uu], dtype = self.data_type))
                    nspline = ((uu - ll) / stride0 + (extrapolate * uu - uu) / stride1).astype(int)
                    self._build_lower(net, xx, ii, uu, ll, stride0, stride1, extrapolate, nspline)
        else:
            raise RuntimeError("Unsupported descriptor")
        self._convert_numpy_to_tensor()

        return self.lower, self.upper

    def _build_lower(self, net, xx, idx, upper, lower, stride0, stride1, extrapolate, nspline):
        vv, dd, d2 = self._make_data(xx, idx)
        self.data[net] = np.zeros([nspline, 6 * self.last_layer_size], dtype = self.data_type)

        # tt.shape: [nspline, self.last_layer_size]
        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            tt = np.full((nspline, self.last_layer_size), stride1)
            tt[:int((upper - lower) / stride0), :] = stride0
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            tt = np.full((nspline, self.last_layer_size), stride1)
            tt[int((lower - extrapolate * lower) / stride1) + 1:(int((lower - extrapolate * lower) / stride1) + int((upper - lower) / stride0)), :] = stride0
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            tt = np.full((nspline, self.last_layer_size), stride1)
            tt[:int((upper - lower) / stride0), :] = stride0
        else:
            raise RuntimeError("Unsupported descriptor")

        # hh.shape: [nspline, self.last_layer_size]
        hh = vv[1:nspline+1, :self.last_layer_size] - vv[:nspline, :self.last_layer_size]

        self.data[net][:, :6 * self.last_layer_size:6] = vv[:nspline, :self.last_layer_size]
        self.data[net][:, 1:6 * self.last_layer_size:6] = dd[:nspline, :self.last_layer_size]
        self.data[net][:, 2:6 * self.last_layer_size:6] = 0.5 * d2[:nspline, :self.last_layer_size]
        self.data[net][:, 3:6 * self.last_layer_size:6] = (1 / (2 * tt * tt * tt)) * (20 * hh - (8 * dd[1:nspline+1, :self.last_layer_size] + 12 * dd[:nspline, :self.last_layer_size]) * tt - (3 * d2[:nspline, :self.last_layer_size] - d2[1:nspline+1, :self.last_layer_size]) * tt * tt)
        self.data[net][:, 4:6 * self.last_layer_size:6] = (1 / (2 * tt * tt * tt * tt)) * (-30 * hh + (14 * dd[1:nspline+1, :self.last_layer_size] + 16 * dd[:nspline, :self.last_layer_size]) * tt + (3 * d2[:nspline, :self.last_layer_size] - 2 * d2[1:nspline+1, :self.last_layer_size]) * tt * tt)
        self.data[net][:, 5:6 * self.last_layer_size:6] = (1 / (2 * tt * tt * tt * tt * tt)) * (12 * hh - 6 * (dd[1:nspline+1, :self.last_layer_size] + dd[:nspline, :self.last_layer_size]) * tt + (d2[1:nspline+1, :self.last_layer_size] - d2[:nspline, :self.last_layer_size]) * tt * tt)

        self.upper[net] = upper
        self.lower[net] = lower

    def _load_sub_graph(self):
        sub_graph_def = tf.GraphDef()
        with tf.Graph().as_default() as sub_graph:
            tf.import_graph_def(sub_graph_def, name = "")
        return sub_graph, sub_graph_def

    def _get_bias(self):
        bias = {}
        for layer in range(1, self.layer_size + 1):
            bias["layer_" + str(layer)] = []
            if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
                if self.type_one_side:
                    for ii in range(0, self.ntypes):
                        if not self._all_excluded(ii):
                            node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/bias_{layer}_{ii}"]
                            bias["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            bias["layer_" + str(layer)].append(np.array([]))
                else:
                    for ii in range(0, self.ntypes * self.ntypes):
                        if (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types:
                            node = self.embedding_net_nodes[f"filter_type_{ii // self.ntypes}{self.suffix}/bias_{layer}_{ii % self.ntypes}"]
                            bias["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            bias["layer_" + str(layer)].append(np.array([]))
            elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
                for ii in range(self.ntypes):
                    for jj in range(ii, self.ntypes):
                        node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/bias_{layer}_{ii}_{jj}"]
                        bias["layer_" + str(layer)].append(tf.make_ndarray(node))
            elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
                if self.type_one_side:
                    for ii in range(0, self.ntypes):
                        if not self._all_excluded(ii):
                            node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/bias_{layer}_{ii}"]
                            bias["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            bias["layer_" + str(layer)].append(np.array([]))
                else:
                    for ii in range(0, self.ntypes * self.ntypes):
                        if (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types:
                            node = self.embedding_net_nodes[f"filter_type_{ii // self.ntypes}{self.suffix}/bias_{layer}_{ii % self.ntypes}"]
                            bias["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            bias["layer_" + str(layer)].append(np.array([]))
            else:
                raise RuntimeError("Unsupported descriptor")
        return bias

    def _get_matrix(self):
        matrix = {}
        for layer in range(1, self.layer_size + 1):
            matrix["layer_" + str(layer)] = []
            if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
                if self.type_one_side:
                    for ii in range(0, self.ntypes):
                        if not self._all_excluded(ii):
                            node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/matrix_{layer}_{ii}"]
                            matrix["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            matrix["layer_" + str(layer)].append(np.array([]))
                else:
                    for ii in range(0, self.ntypes * self.ntypes):
                        if (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types:
                            node = self.embedding_net_nodes[f"filter_type_{ii // self.ntypes}{self.suffix}/matrix_{layer}_{ii % self.ntypes}"]
                            matrix["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            matrix["layer_" + str(layer)].append(np.array([]))
            elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
                for ii in range(self.ntypes):
                    for jj in range(ii, self.ntypes):
                        node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/matrix_{layer}_{ii}_{jj}"]
                        matrix["layer_" + str(layer)].append(tf.make_ndarray(node))
            elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
                if self.type_one_side:
                    for ii in range(0, self.ntypes):
                        if not self._all_excluded(ii):
                            node = self.embedding_net_nodes[f"filter_type_all{self.suffix}/matrix_{layer}_{ii}"]
                            matrix["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            matrix["layer_" + str(layer)].append(np.array([]))
                else:
                    for ii in range(0, self.ntypes * self.ntypes):
                        if (ii // self.ntypes, ii % self.ntypes) not in self.exclude_types:
                            node = self.embedding_net_nodes[f"filter_type_{ii // self.ntypes}{self.suffix}/matrix_{layer}_{ii % self.ntypes}"]
                            matrix["layer_" + str(layer)].append(tf.make_ndarray(node))
                        else:
                            matrix["layer_" + str(layer)].append(np.array([]))
            else:
                raise RuntimeError("Unsupported descriptor")

        return matrix

    # one-by-one executions
    def _make_data(self, xx, idx):
        with self.sub_graph.as_default():
            with self.sub_sess.as_default():
                xx = tf.reshape(xx, [xx.size, -1])
                for layer in range(self.layer_size):
                    if layer == 0:
                        xbar = tf.matmul(
                        xx, self.matrix["layer_" + str(layer + 1)][idx]) + self.bias["layer_" + str(layer + 1)][idx]
                        if self.neuron[0] == 1:
                            yy = self._layer_0(
                                xx, self.matrix["layer_" + str(layer + 1)][idx], self.bias["layer_" + str(layer + 1)][idx]) + xx
                            dy = op_module.unaggregated_dy_dx_s(
                                yy, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype)) + tf.ones([1, 1], yy.dtype)
                            dy2 = op_module.unaggregated_dy2_dx_s(
                                yy, dy, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype))
                        elif self.neuron[0] == 2:
                            tt, yy = self._layer_1(
                                xx, self.matrix["layer_" + str(layer + 1)][idx], self.bias["layer_" + str(layer + 1)][idx])
                            dy = op_module.unaggregated_dy_dx_s(
                                yy - tt, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype)) + tf.ones([1, 2], yy.dtype)
                            dy2 = op_module.unaggregated_dy2_dx_s(
                                yy - tt, dy, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype))
                        else:
                            yy = self._layer_0(
                                xx, self.matrix["layer_" + str(layer + 1)][idx], self.bias["layer_" + str(layer + 1)][idx])
                            dy = op_module.unaggregated_dy_dx_s(
                                yy, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype))
                            dy2 = op_module.unaggregated_dy2_dx_s(
                                yy, dy, self.matrix["layer_" + str(layer + 1)][idx], xbar, tf.constant(self.functype))
                    else:
                        ybar = tf.matmul(
                            yy, self.matrix["layer_" + str(layer + 1)][idx]) + self.bias["layer_" + str(layer + 1)][idx]
                        tt, zz = self._layer_1(
                            yy, self.matrix["layer_" + str(layer + 1)][idx], self.bias["layer_" + str(layer + 1)][idx])
                        dz = op_module.unaggregated_dy_dx(
                            zz - tt, self.matrix["layer_" + str(layer + 1)][idx], dy, ybar, tf.constant(self.functype))
                        dy2 = op_module.unaggregated_dy2_dx(
                            zz - tt, self.matrix["layer_" + str(layer + 1)][idx], dy, dy2, ybar, tf.constant(self.functype))
                        dy = dz
                        yy = zz

                vv = zz.eval()
                dd = dy.eval()
                d2 = dy2.eval()
        return vv, dd, d2

    def _layer_0(self, x, w, b):
        return self.activation_fn(tf.matmul(x, w) + b)

    def _layer_1(self, x, w, b):
        t = tf.concat([x, x], axis=1)
        return t, self.activation_fn(tf.matmul(x, w) + b) + t

    # Change the embedding net range to sw / min_nbor_dist
    def _get_env_mat_range(self,
                           min_nbor_dist):
        sw    = self._spline5_switch(min_nbor_dist, self.rcut_smth, self.rcut)
        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            lower = -self.davg[:, 0] / self.dstd[:, 0]
            upper = ((1 / min_nbor_dist) * sw - self.davg[:, 0]) / self.dstd[:, 0]
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            var = np.square(sw / (min_nbor_dist * self.dstd[:, 1:4]))
            lower = np.min(-var, axis=1)
            upper = np.max(var, axis=1)
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            lower = -self.davg[:, 0] / self.dstd[:, 0]
            upper = ((1 / min_nbor_dist) * sw - self.davg[:, 0]) / self.dstd[:, 0]
        else:
            raise RuntimeError("Unsupported descriptor")
        log.info('training data with lower boundary: ' + str(lower))
        log.info('training data with upper boundary: ' + str(upper))
        # returns element-wise lower and upper
        return np.floor(lower), np.ceil(upper)

    def _spline5_switch(self,
                        xx,
                        rmin,
                        rmax):
        if xx < rmin:
            vv = 1
        elif xx < rmax:
            uu = (xx - rmin) / (rmax - rmin)
            vv = uu*uu*uu * (-6 * uu*uu + 15 * uu - 10) + 1
        else:
            vv = 0
        return vv

    def _get_layer_size(self):
        layer_size = 0
        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            layer_size = len(self.embedding_net_nodes) // ((self.ntypes * self.ntypes - len(self.exclude_types)) * 2)
            if self.type_one_side :
                layer_size = len(self.embedding_net_nodes) // ((self.ntypes - self._n_all_excluded) * 2)
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            layer_size = len(self.embedding_net_nodes) // int(comb(self.ntypes + 1, 2) * 2)
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            layer_size = len(self.embedding_net_nodes) // ((self.ntypes * self.ntypes - len(self.exclude_types)) * 2)
            if self.type_one_side :
                layer_size = len(self.embedding_net_nodes) // ((self.ntypes - self._n_all_excluded) * 2)
        else:
            raise RuntimeError("Unsupported descriptor")
        return layer_size
    
    @property
    @lru_cache()
    def _n_all_excluded(self) -> int:
        """Then number of types excluding all types."""
        return sum((int(self._all_excluded(ii)) for ii in range(0, self.ntypes)))

    @lru_cache()
    def _all_excluded(self, ii: int) -> bool:
        """Check if type ii excluds all types.
        
        Parameters
        ----------
        ii : int
            type index

        Returns
        -------
        bool
            if type ii excluds all types
        """
        return all([(ii, type_i) in self.exclude_types for type_i in range(self.ntypes)])

    def _get_table_size(self):
        table_size = 0
        if isinstance(self.descrpt, deepmd.descriptor.DescrptSeA):
            table_size = self.ntypes * self.ntypes
            if self.type_one_side :
                table_size = self.ntypes
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeT):
            table_size = int(comb(self.ntypes + 1, 2))
        elif isinstance(self.descrpt, deepmd.descriptor.DescrptSeR):
            table_size = self.ntypes * self.ntypes
            if self.type_one_side :
                table_size = self.ntypes
        else:
            raise RuntimeError("Unsupported descriptor")
        return table_size
    
    def _get_data_type(self):
        for item in self.matrix["layer_" + str(self.layer_size)]:
            if len(item) != 0:
                return type(item[0][0])
        return None

    def _get_last_layer_size(self):
        for item in self.matrix["layer_" + str(self.layer_size)]:
            if len(item) != 0:
                return item.shape[1]
        return 0

    def _convert_numpy_to_tensor(self):
        """Convert self.data from np.ndarray to tf.Tensor."""
        for ii in self.data:
            self.data[ii] = tf.constant(self.data[ii])