data.py 30.8 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
#!/usr/bin/env python3

import time
import glob
import numpy as np
import os.path
from typing import Tuple, List
import logging

from deepmd.env import GLOBAL_NP_FLOAT_PRECISION
from deepmd.env import GLOBAL_ENER_FLOAT_PRECISION
from deepmd.utils import random as dp_random
from deepmd.utils.path import DPPath

log = logging.getLogger(__name__)

class DeepmdData() :
    """
    Class for a data system. 

    It loads data from hard disk, and mantains the data as a `data_dict`

    Parameters
    ----------
    sys_path
            Path to the data system
    set_prefix
            Prefix for the directories of different sets
    shuffle_test
            If the test data are shuffled
    type_map
            Gives the name of different atom types
    modifier
            Data modifier that has the method `modify_data`
    trn_all_set
            Use all sets as training dataset. Otherwise, if the number of sets is more than 1, the last set is left for test.
    """
    def __init__ (self, 
                  sys_path : str, 
                  set_prefix : str = 'set',
                  shuffle_test : bool = True, 
                  type_map : List[str] = None, 
                  modifier = None,
                  trn_all_set : bool = False) :
        """
        Constructor
        """
        root = DPPath(sys_path)
        self.dirs = root.glob(set_prefix + ".*")
        self.dirs.sort()
        self.mixed_type = self._check_mode(self.dirs[0])  # mixed_type format only has one set
        # load atom type
        self.atom_type = self._load_type(root)
        self.natoms = len(self.atom_type)
        if self.mixed_type:
            # nframes x natoms
            self.atom_type_mix = self._load_type_mix(self.dirs[0])
        # load atom type map
        self.type_map = self._load_type_map(root)
        if self.type_map is not None:
            assert(len(self.type_map) >= max(self.atom_type)+1)
        # check pbc
        self.pbc = self._check_pbc(root)
        # enforce type_map if necessary
        if type_map is not None and self.type_map is not None:
            if not self.mixed_type:
                atom_type_ = [type_map.index(self.type_map[ii]) for ii in self.atom_type]
                self.atom_type = np.array(atom_type_, dtype = np.int32)
            else:
                sorter = np.argsort(type_map)
                type_idx_map = sorter[np.searchsorted(type_map, self.type_map, sorter=sorter)]
                try:
                    atom_type_mix_ = np.array(type_idx_map)[self.atom_type_mix].astype(np.int32)
                except RuntimeError as e:
                    raise RuntimeError("some types in 'real_atom_types.npy' of sys {} are not contained in {} types!"
                                       .format(self.dirs[0], self.get_ntypes())) from e
                self.atom_type_mix = atom_type_mix_
            self.type_map = type_map
        if type_map is None and self.type_map is None and self.mixed_type:
            raise RuntimeError('mixed_type format must have type_map!')
        # make idx map
        self.idx_map = self._make_idx_map(self.atom_type)
        # train dirs
        self.test_dir = self.dirs[-1]
        if trn_all_set:
            self.train_dirs = self.dirs
        else:
            if len(self.dirs) == 1 :
                self.train_dirs = self.dirs
            else :
                self.train_dirs = self.dirs[:-1]
        self.data_dict = {}        
        # add box and coord
        self.add('box', 9, must = self.pbc)
        self.add('coord', 3, atomic = True, must = True)
        # set counters
        self.set_count = 0
        self.iterator = 0
        self.shuffle_test = shuffle_test
        # set modifier
        self.modifier = modifier


    def add(self, 
            key : str, 
            ndof : int, 
            atomic : bool = False, 
            must : bool = False, 
            high_prec : bool = False,
            type_sel : List[int] = None,
            repeat : int = 1,
            default: float=0.,
    ) :
        """
        Add a data item that to be loaded

        Parameters
        ----------
        key 
                The key of the item. The corresponding data is stored in `sys_path/set.*/key.npy`
        ndof
                The number of dof
        atomic
                The item is an atomic property.
                If False, the size of the data should be nframes x ndof
                If True, the size of data should be nframes x natoms x ndof
        must
                The data file `sys_path/set.*/key.npy` must exist.
                If must is False and the data file does not exist, the `data_dict[find_key]` is set to 0.0
        high_prec
                Load the data and store in float64, otherwise in float32
        type_sel
                Select certain type of atoms
        repeat
                The data will be repeated `repeat` times.
        default : float, default=0.
                default value of data
        """
        self.data_dict[key] = {'ndof': ndof, 
                               'atomic': atomic,
                               'must': must, 
                               'high_prec': high_prec,
                               'type_sel': type_sel,
                               'repeat': repeat,
                               'reduce': None,
                               'default': default,
        }
        return self

    
    def reduce(self, 
               key_out : str,
               key_in : str
    ) :
        """
        Generate a new item from the reduction of another atom

        Parameters
        ----------
        key_out
                The name of the reduced item
        key_in
                The name of the data item to be reduced
        """
        assert (key_in in self.data_dict), 'cannot find input key'
        assert (self.data_dict[key_in]['atomic']), 'reduced property should be atomic'
        assert (not(key_out in self.data_dict)), 'output key should not have been added'
        assert (self.data_dict[key_in]['repeat'] == 1), 'reduced proerties should not have been repeated'

        self.data_dict[key_out] = {'ndof': self.data_dict[key_in]['ndof'],
                                   'atomic': False,
                                   'must': True,
                                   'high_prec': True,
                                   'type_sel': None,
                                   'repeat': 1,
                                   'reduce': key_in,
        }
        return self

    def get_data_dict(self) -> dict:
        """
        Get the `data_dict`
        """
        return self.data_dict

    def check_batch_size (self, batch_size) :        
        """
        Check if the system can get a batch of data with `batch_size` frames.
        """
        for ii in self.train_dirs :
            if self.data_dict['coord']['high_prec'] :
                tmpe = (ii / "coord.npy").load_numpy().astype(GLOBAL_ENER_FLOAT_PRECISION)
            else:
                tmpe = (ii / "coord.npy").load_numpy().astype(GLOBAL_NP_FLOAT_PRECISION)
            if tmpe.ndim == 1:
                tmpe = tmpe.reshape([1,-1])            
            if tmpe.shape[0] < batch_size :
                return ii, tmpe.shape[0]
        return None

    def check_test_size (self, test_size) :
        """
        Check if the system can get a test dataset with `test_size` frames.
        """
        if self.data_dict['coord']['high_prec'] :
            tmpe = (self.test_dir / "coord.npy").load_numpy().astype(GLOBAL_ENER_FLOAT_PRECISION)
        else:
            tmpe = (self.test_dir / "coord.npy").load_numpy().astype(GLOBAL_NP_FLOAT_PRECISION)            
        if tmpe.ndim == 1:
            tmpe = tmpe.reshape([1,-1])            
        if tmpe.shape[0] < test_size :
            return self.test_dir, tmpe.shape[0]
        else :
            return None

    def get_batch(self, 
                  batch_size : int
    ) -> dict :
        """
        Get a batch of data with `batch_size` frames. The frames are randomly picked from the data system.

        Parameters
        ----------
        batch_size
                size of the batch
        """
        if hasattr(self, 'batch_set') :
            set_size = self.batch_set["coord"].shape[0]
        else :
            set_size = 0
        if self.iterator + batch_size > set_size :
            self._load_batch_set (self.train_dirs[self.set_count % self.get_numb_set()])
            self.set_count += 1
            set_size = self.batch_set["coord"].shape[0]
            if self.modifier is not None:
                self.modifier.modify_data(self.batch_set)
        iterator_1 = self.iterator + batch_size
        if iterator_1 >= set_size :
            iterator_1 = set_size
        idx = np.arange (self.iterator, iterator_1)
        self.iterator += batch_size
        ret = self._get_subdata(self.batch_set, idx)
        return ret

    def get_test (self, 
                  ntests : int = -1
    ) -> dict:
        """
        Get the test data with `ntests` frames. 

        Parameters
        ----------
        ntests
                Size of the test data set. If `ntests` is -1, all test data will be get.
        """
        if not hasattr(self, 'test_set') :            
            self._load_test_set(self.test_dir, self.shuffle_test)
        if ntests == -1:
            idx = None
        else :
            ntests_ = ntests if ntests < self.test_set['type'].shape[0] else self.test_set['type'].shape[0]
            # print('ntest', self.test_set['type'].shape[0], ntests, ntests_)
            idx = np.arange(ntests_)
        ret = self._get_subdata(self.test_set, idx = idx)
        if self.modifier is not None:
            self.modifier.modify_data(ret)
        return ret

    def get_ntypes(self) -> int:
        """
        Number of atom types in the system
        """
        if self.type_map is not None:
            return len(self.type_map)
        else:
            return max(self.get_atom_type()) + 1

    def get_type_map(self) -> List[str]:
        """
        Get the type map
        """
        return self.type_map

    def get_atom_type(self) -> List[int]:
        """
        Get atom types
        """
        return self.atom_type

    def get_numb_set (self) -> int:
        """
        Get number of training sets
        """
        return len (self.train_dirs)

    def get_numb_batch (self, 
                        batch_size : int, 
                        set_idx : int
    ) -> int:
        """
        Get the number of batches in a set.
        """
        data = self._load_set(self.train_dirs[set_idx])
        ret = data["coord"].shape[0] // batch_size
        if ret == 0:
            ret = 1
        return ret

    def get_sys_numb_batch (self, 
                            batch_size : int
    ) -> int:
        """
        Get the number of batches in the data system.
        """
        ret = 0
        for ii in range(len(self.train_dirs)) :
            ret += self.get_numb_batch(batch_size, ii)
        return ret

    def get_natoms (self) :
        """
        Get number of atoms
        """
        return len(self.atom_type)

    def get_natoms_vec (self,
                        ntypes : int) :
        """
        Get number of atoms and number of atoms in different types

        Parameters
        ----------
        ntypes
                Number of types (may be larger than the actual number of types in the system).

        Returns
        -------
        natoms
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        """
        natoms, natoms_vec = self._get_natoms_2 (ntypes)
        tmp = [natoms, natoms]
        tmp = np.append (tmp, natoms_vec)
        return tmp.astype(np.int32)
    
    def avg(self, key) :
        """
        Return the average value of an item.
        """
        if key not in self.data_dict.keys() :
            raise RuntimeError('key %s has not been added' % key)
        info = self.data_dict[key]  
        ndof = info['ndof']
        eners = np.array([])
        for ii in self.train_dirs:
            data = self._load_set(ii)
            ei = data[key].reshape([-1, ndof])
            if eners.size  == 0 :
                eners = ei
            else :
                eners = np.concatenate((eners, ei), axis = 0)
        if eners.size == 0 :
            return 0
        else :
            return np.average(eners, axis = 0)

    def _idx_map_sel(self, atom_type, type_sel) :
        new_types = []
        for ii in atom_type :
            if ii in type_sel:
                new_types.append(ii)
        new_types = np.array(new_types, dtype = int)
        natoms = new_types.shape[0]
        idx = np.arange(natoms)
        idx_map = np.lexsort((idx, new_types))
        return idx_map

    def _get_natoms_2 (self, ntypes) :
        sample_type = self.atom_type
        natoms = len(sample_type)
        natoms_vec = np.zeros (ntypes).astype(int)
        for ii in range (ntypes) :
            natoms_vec[ii] = np.count_nonzero(sample_type == ii)
        return natoms, natoms_vec

    def _get_subdata(self, data, idx = None) :
        new_data = {}
        for ii in data:
            dd = data[ii]
            if 'find_' in ii:
                new_data[ii] = dd                
            else:
                if idx is not None:
                    new_data[ii] = dd[idx]
                else :
                    new_data[ii] = dd
        return new_data

    def _load_batch_set (self,
                         set_name: DPPath) :
        self.batch_set = self._load_set(set_name)
        self.batch_set, _ = self._shuffle_data(self.batch_set)
        self.reset_get_batch()

    def reset_get_batch(self):
        self.iterator = 0

    def _load_test_set (self,
                       set_name: DPPath, 
                       shuffle_test) :
        self.test_set = self._load_set(set_name)        
        if shuffle_test :
            self.test_set, _ = self._shuffle_data(self.test_set)

    def _shuffle_data (self,
                       data) :
        ret = {}
        nframes = data['coord'].shape[0]
        idx = np.arange (nframes)
        dp_random.shuffle(idx)
        for kk in data :
            if type(data[kk]) == np.ndarray and \
               len(data[kk].shape) == 2 and \
               data[kk].shape[0] == nframes and \
               not('find_' in kk):
                ret[kk] = data[kk][idx]
            else :
                ret[kk] = data[kk]
        return ret, idx

    def _load_set(self, set_name: DPPath) :
        # get nframes
        if not isinstance(set_name, DPPath):
            set_name = DPPath(set_name)
        path = set_name / "coord.npy"
        if self.data_dict['coord']['high_prec'] :
            coord = path.load_numpy().astype(GLOBAL_ENER_FLOAT_PRECISION)
        else:
            coord = path.load_numpy().astype(GLOBAL_NP_FLOAT_PRECISION)            
        if coord.ndim == 1:
            coord = coord.reshape([1,-1])
        nframes = coord.shape[0]
        assert(coord.shape[1] == self.data_dict['coord']['ndof'] * self.natoms)
        # load keys
        data = {}
        for kk in self.data_dict.keys():
            if self.data_dict[kk]['reduce'] is None :
                data['find_'+kk], data[kk] \
                    = self._load_data(set_name, 
                                      kk, 
                                      nframes, 
                                      self.data_dict[kk]['ndof'],
                                      atomic = self.data_dict[kk]['atomic'],
                                      high_prec = self.data_dict[kk]['high_prec'],
                                      must = self.data_dict[kk]['must'], 
                                      type_sel = self.data_dict[kk]['type_sel'],
                                      repeat = self.data_dict[kk]['repeat'],
                                      default=self.data_dict[kk]['default'],
                                      )
        for kk in self.data_dict.keys():
            if self.data_dict[kk]['reduce'] is not None :
                k_in = self.data_dict[kk]['reduce']
                ndof = self.data_dict[kk]['ndof']
                data['find_'+kk] = data['find_'+k_in]
                tmp_in = data[k_in].astype(GLOBAL_ENER_FLOAT_PRECISION)
                data[kk] = np.sum(np.reshape(tmp_in, [nframes, self.natoms, ndof]), axis = 1)

        if self.mixed_type:
            real_type = self.atom_type_mix.reshape([nframes, self.natoms])
            data['type'] = real_type
            natoms = data['type'].shape[1]
            # nframes x ntypes
            atom_type_nums = np.array([(real_type == i).sum(axis=-1) for i in range(self.get_ntypes())],
                                      dtype=np.int32).T
            assert (atom_type_nums.sum(axis=-1) == natoms).all(), \
                "some types in 'real_atom_types.npy' of sys {} are not contained in {} types!" \
                .format(self.dirs[0], self.get_ntypes())
            data['real_natoms_vec'] = np.concatenate((np.tile(np.array([natoms, natoms], dtype=np.int32), (nframes, 1)),
                                                      atom_type_nums), axis=-1)
        else:
            data['type'] = np.tile(self.atom_type[self.idx_map], (nframes, 1))

        return data


    def _load_data(self, set_name, key, nframes, ndof_, atomic = False, must = True, repeat = 1, high_prec = False, type_sel = None, default: float=0.):
        if atomic:
            natoms = self.natoms
            idx_map = self.idx_map
            # if type_sel, then revise natoms and idx_map
            if type_sel is not None:
                natoms = 0
                for jj in type_sel :
                    natoms += np.sum(self.atom_type == jj)                
                idx_map = self._idx_map_sel(self.atom_type, type_sel)
            ndof = ndof_ * natoms
        else:
            ndof = ndof_
        path = set_name / (key+".npy")
        if path.is_file() :
            if high_prec :
                data = path.load_numpy().astype(GLOBAL_ENER_FLOAT_PRECISION)
            else:
                data = path.load_numpy().astype(GLOBAL_NP_FLOAT_PRECISION)
            try:    # YWolfeee: deal with data shape error
                if atomic :
                    data = data.reshape([nframes, natoms, -1])
                    data = data[:,idx_map,:]
                    data = data.reshape([nframes, -1])
                data = np.reshape(data, [nframes, ndof])
            except ValueError as err_message:
                explanation = "This error may occur when your label mismatch it's name, i.e. you might store global tensor in `atomic_tensor.npy` or atomic tensor in `tensor.npy`." 
                log.error(str(err_message))
                log.error(explanation)
                raise ValueError(str(err_message) + ". " + explanation)
            if repeat != 1:
                data = np.repeat(data, repeat).reshape([nframes, -1])
            return np.float32(1.0), data
        elif must:
            raise RuntimeError("%s not found!" % path)
        else:
            if high_prec :
                data = np.full([nframes, ndof], default, dtype=GLOBAL_ENER_FLOAT_PRECISION)                
            else :
                data = np.full([nframes, ndof], default, dtype=GLOBAL_NP_FLOAT_PRECISION)
            if repeat != 1:
                data = np.repeat(data, repeat).reshape([nframes, -1])
            return np.float32(0.0), data

        
    def _load_type (self, sys_path: DPPath) :
        atom_type = (sys_path / "type.raw").load_txt(dtype=np.int32, ndmin=1)
        return atom_type

    def _load_type_mix(self, set_name: DPPath):
        type_path = set_name / "real_atom_types.npy"
        real_type = type_path.load_numpy().astype(np.int32).reshape([-1, self.natoms])
        return real_type

    def _make_idx_map(self, atom_type):
        natoms = atom_type.shape[0]
        idx = np.arange (natoms)
        idx_map = np.lexsort ((idx, atom_type))
        return idx_map

    def _load_type_map(self, sys_path: DPPath) :
        fname = sys_path / 'type_map.raw'
        if fname.is_file() :            
            return fname.load_txt(dtype=str, ndmin=1).tolist()
        else :
            return None

    def _check_pbc(self, sys_path: DPPath):
        pbc = True
        if (sys_path / 'nopbc').is_file() :
            pbc = False
        return pbc

    def _check_mode(self, set_path: DPPath):
        return (set_path / 'real_atom_types.npy').is_file()


class DataSets (object):
    """
    Outdated class for one data system.

    .. deprecated:: 2.0.0
        This class is not maintained any more.
    """
    def __init__ (self, 
                  sys_path,
                  set_prefix,
                  seed = None, 
                  shuffle_test = True) :
        self.dirs = glob.glob (os.path.join(sys_path, set_prefix + ".*"))
        self.dirs.sort()
        # load atom type
        self.atom_type, self.idx_map, self.idx3_map = self.load_type (sys_path)
        # load atom type map
        self.type_map = self.load_type_map(sys_path)
        if self.type_map is not None:
            assert(len(self.type_map) >= max(self.atom_type)+1)
        # train dirs
        self.test_dir   = self.dirs[-1]
        if len(self.dirs) == 1 :
            self.train_dirs = self.dirs
        else :
            self.train_dirs = self.dirs[:-1]
        # check fparam
        has_fparam = [ os.path.isfile(os.path.join(ii, 'fparam.npy')) for ii in self.dirs ]
        if any(has_fparam) and (not all(has_fparam)) :
            raise RuntimeError("system %s: if any set has frame parameter, then all sets should have frame parameter" % sys_path)
        if all(has_fparam) :
            self.has_fparam = 0
        else :
            self.has_fparam = -1
        # check aparam
        has_aparam = [ os.path.isfile(os.path.join(ii, 'aparam.npy')) for ii in self.dirs ]
        if any(has_aparam) and (not all(has_aparam)) :
            raise RuntimeError("system %s: if any set has frame parameter, then all sets should have frame parameter" % sys_path)
        if all(has_aparam) :
            self.has_aparam = 0
        else :
            self.has_aparam = -1
        # energy norm
        self.eavg = self.stats_energy()
        # load sets
        self.set_count = 0
        self.load_batch_set (self.train_dirs[self.set_count % self.get_numb_set()])
        self.load_test_set (self.test_dir, shuffle_test)

    def check_batch_size (self, batch_size) :
        for ii in self.train_dirs :
            tmpe = np.load(os.path.join(ii, "coord.npy"))
            if tmpe.shape[0] < batch_size :
                return ii, tmpe.shape[0]
        return None

    def check_test_size (self, test_size) :
        tmpe = np.load(os.path.join(self.test_dir, "coord.npy"))
        if tmpe.shape[0] < test_size :
            return self.test_dir, tmpe.shape[0]
        else :
            return None

    def load_type (self, sys_path) :
        atom_type = np.loadtxt (os.path.join(sys_path, "type.raw"), dtype=np.int32, ndmin=1)
        natoms = atom_type.shape[0]
        idx = np.arange (natoms)
        idx_map = np.lexsort ((idx, atom_type))
        atom_type3 = np.repeat(atom_type, 3)
        idx3 = np.arange (natoms * 3)
        idx3_map = np.lexsort ((idx3, atom_type3))
        return atom_type, idx_map, idx3_map

    def load_type_map(self, sys_path) :
        fname = os.path.join(sys_path, 'type_map.raw')
        if os.path.isfile(fname) :            
            with open(os.path.join(sys_path, 'type_map.raw')) as fp:
                return fp.read().split()                
        else :
            return None

    def get_type_map(self) :
        return self.type_map

    def get_numb_set (self) :
        return len (self.train_dirs)
    
    def stats_energy (self) :
        eners = np.array([])
        for ii in self.train_dirs:
            ener_file = os.path.join(ii, "energy.npy")
            if os.path.isfile(ener_file) :
                ei = np.load(ener_file)
                eners = np.append(eners, ei)
        if eners.size == 0 :
            return 0
        else :
            return np.average(eners)

    def load_energy(self, 
                    set_name,
                    nframes,
                    nvalues,
                    energy_file, 
                    atom_energy_file) :
        """
        return : coeff_ener, ener, coeff_atom_ener, atom_ener
        """
        # load atom_energy
        coeff_atom_ener, atom_ener = self.load_data(set_name, atom_energy_file, [nframes, nvalues], False)
        # ignore energy_file
        if coeff_atom_ener == 1:
            ener = np.sum(atom_ener, axis = 1)
            coeff_ener = 1
        # load energy_file
        else:
            coeff_ener, ener = self.load_data(set_name, energy_file, [nframes], False)
        return coeff_ener, ener, coeff_atom_ener, atom_ener

    def load_data(self, set_name, data_name, shape, is_necessary = True):
        path = os.path.join(set_name, data_name+".npy")
        if os.path.isfile (path) :
            data = np.load(path)
            data = np.reshape(data, shape)
            if is_necessary:
                return data
            return 1, data
        elif is_necessary:
            raise OSError("%s not found!" % path)
        else:
            data = np.zeros(shape)
        return 0, data

    def load_set(self, set_name, shuffle = True):
        data = {}
        data["box"] = self.load_data(set_name, "box", [-1, 9])
        nframe = data["box"].shape[0]
        data["coord"] = self.load_data(set_name, "coord", [nframe, -1])
        ncoord = data["coord"].shape[1]
        if self.has_fparam >= 0:
            data["fparam"] = self.load_data(set_name, "fparam", [nframe, -1])
            if self.has_fparam == 0 :
                self.has_fparam = data["fparam"].shape[1]
            else :
                assert self.has_fparam == data["fparam"].shape[1]
        if self.has_aparam >= 0:
            data["aparam"] = self.load_data(set_name, "aparam", [nframe, -1])
            if self.has_aparam == 0 :
                self.has_aparam = data["aparam"].shape[1] // (ncoord//3)
            else :
                assert self.has_aparam == data["aparam"].shape[1] // (ncoord//3)
        data["prop_c"] = np.zeros(5)
        data["prop_c"][0], data["energy"], data["prop_c"][3], data["atom_ener"] \
            = self.load_energy (set_name, nframe, ncoord // 3, "energy", "atom_ener")
        data["prop_c"][1], data["force"] = self.load_data(set_name, "force", [nframe, ncoord], False)
        data["prop_c"][2], data["virial"] = self.load_data(set_name, "virial", [nframe, 9], False)
        data["prop_c"][4], data["atom_pref"] = self.load_data(set_name, "atom_pref", [nframe, ncoord//3], False)
        data["atom_pref"] = np.repeat(data["atom_pref"], 3, axis=1)
        # shuffle data
        if shuffle:
            idx = np.arange (nframe)
            dp_random.shuffle(idx)
            for ii in data:
                if ii != "prop_c":
                    data[ii] = data[ii][idx]
        data["type"] = np.tile (self.atom_type, (nframe, 1))
        # sort according to type
        for ii in ["type", "atom_ener"]:
            data[ii] = data[ii][:, self.idx_map]
        for ii in ["coord", "force", "atom_pref"]:
            data[ii] = data[ii][:, self.idx3_map]
        return data

    def load_batch_set (self,
                        set_name) :
        self.batch_set = self.load_set(set_name, True)
        self.reset_iter ()

    def load_test_set (self,
                       set_name, 
                       shuffle_test) :
        self.test_set = self.load_set(set_name, shuffle_test)
        
    def reset_iter (self) :
        self.iterator = 0              
        self.set_count += 1
    
    def get_set(self, data, idx = None) :
        new_data = {}
        for ii in data:
            dd = data[ii]
            if ii == "prop_c":
                new_data[ii] = dd.astype(np.float32)
            else:
                if idx is not None:
                    dd = dd[idx]
                if ii == "type":
                    new_data[ii] = dd
                else:
                    new_data[ii] = dd.astype(GLOBAL_NP_FLOAT_PRECISION)
        return new_data

    def get_test (self) :
        """
        returned property prefector [4] in order: 
        energy, force, virial, atom_ener
        """
        return self.get_set(self.test_set)
    
    def get_batch (self,
                   batch_size) :
        """
        returned property prefector [4] in order: 
        energy, force, virial, atom_ener
        """
        set_size = self.batch_set["energy"].shape[0]
        # assert (batch_size <= set_size), "batch size should be no more than set size"
        if self.iterator + batch_size > set_size :
            self.load_batch_set (self.train_dirs[self.set_count % self.get_numb_set()])
            set_size = self.batch_set["energy"].shape[0]
        # print ("%d %d %d" % (self.iterator, self.iterator + batch_size, set_size))
        iterator_1 = self.iterator + batch_size
        if iterator_1 >= set_size :
            iterator_1 = set_size
        idx = np.arange (self.iterator, iterator_1)
        self.iterator += batch_size
        return self.get_set(self.batch_set, idx)
    
    def get_natoms (self) :
        sample_type = self.batch_set["type"][0]
        natoms = len(sample_type)
        return natoms

    def get_natoms_2 (self, ntypes) :
        sample_type = self.batch_set["type"][0]
        natoms = len(sample_type)
        natoms_vec = np.zeros (ntypes).astype(int)
        for ii in range (ntypes) :
            natoms_vec[ii] = np.count_nonzero(sample_type == ii)
        return natoms, natoms_vec

    def get_natoms_vec (self, ntypes) :
        natoms, natoms_vec = self.get_natoms_2 (ntypes)
        tmp = [natoms, natoms]
        tmp = np.append (tmp, natoms_vec)
        return tmp.astype(np.int32)

    def set_numb_batch (self, 
                        batch_size) :
        return self.batch_set["energy"].shape[0] // batch_size

    def get_sys_numb_batch (self, batch_size) :
        return self.set_numb_batch(batch_size) * self.get_numb_set()

    def get_ener (self) :
        return self.eavg

    def numb_fparam(self) :
        return self.has_fparam

    def numb_aparam(self) :
        return self.has_aparam