compat.py 11 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Module providing compatibility between `0.x.x` and `1.x.x` input versions."""

import json
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Union

import numpy as np
from deepmd.common import j_must_have


def convert_input_v0_v1(
    jdata: Dict[str, Any], warning: bool = True, dump: Optional[Union[str, Path]] = None
) -> Dict[str, Any]:
    """Convert input from v0 format to v1.

    Parameters
    ----------
    jdata : Dict[str, Any]
        loaded json/yaml file
    warning : bool, optional
        whether to show deprecation warning, by default True
    dump : Optional[Union[str, Path]], optional
        whether to dump converted file, by default None

    Returns
    -------
    Dict[str, Any]
        converted output
    """

    output = {}
    output["model"] = _model(jdata, jdata["use_smooth"])
    output["learning_rate"] = _learning_rate(jdata)
    output["loss"] = _loss(jdata)
    output["training"] = _training(jdata)
    if warning:
        _warning_input_v0_v1(dump)
    if dump is not None:
        with open(dump, "w") as fp:
            json.dump(output, fp, indent=4)
    return output


def _warning_input_v0_v1(fname: Optional[Union[str, Path]]):
    msg = "It seems that you are using a deepmd-kit input of version 0.x.x, " \
          "which is deprecated. we have converted the input to >2.0.0 compatible"
    if fname is not None:
        msg += f", and output it to file {fname}"
    warnings.warn(msg)


def _model(jdata: Dict[str, Any], smooth: bool) -> Dict[str, Dict[str, Any]]:
    """Convert data to v1 input for non-smooth model.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data
    smooth : bool
        whether to use smooth or non-smooth descriptor version

    Returns
    -------
    Dict[str, Dict[str, Any]]
        dictionary with model input parameters and sub-dictionaries for descriptor and
        fitting net
    """
    model = {}
    model["descriptor"] = (
        _smth_descriptor(jdata) if smooth else _nonsmth_descriptor(jdata)
    )
    model["fitting_net"] = _fitting_net(jdata)
    return model


def _nonsmth_descriptor(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for non-smooth descriptor.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with descriptor parameters
    """
    descriptor = {}
    descriptor["type"] = "loc_frame"
    _jcopy(jdata, descriptor, ("sel_a", "sel_r", "rcut", "axis_rule"))
    return descriptor


def _smth_descriptor(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for smooth descriptor.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with descriptor parameters
    """
    descriptor = {}
    seed = jdata.get("seed", None)
    if seed is not None:
        descriptor["seed"] = seed
    descriptor["type"] = "se_a"
    descriptor["sel"] = jdata["sel_a"]
    _jcopy(jdata, descriptor, ("rcut", ))
    descriptor["rcut_smth"] = jdata.get("rcut_smth", descriptor["rcut"])
    descriptor["neuron"] = j_must_have(jdata, "filter_neuron")
    descriptor["axis_neuron"] = j_must_have(jdata, "axis_neuron", ["n_axis_neuron"])
    descriptor["resnet_dt"] = False
    if "resnet_dt" in jdata:
        descriptor["resnet_dt"] = jdata["filter_resnet_dt"]

    return descriptor


def _fitting_net(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for fitting net.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with fitting net parameters
    """
    fitting_net = {}

    seed = jdata.get("seed", None)
    if seed is not None:
        fitting_net["seed"] = seed
    fitting_net["neuron"] = j_must_have(jdata, "fitting_neuron", ["n_neuron"])
    fitting_net["resnet_dt"] = True
    if "resnet_dt" in jdata:
        fitting_net["resnet_dt"] = jdata["resnet_dt"]
    if "fitting_resnet_dt" in jdata:
        fitting_net["resnet_dt"] = jdata["fitting_resnet_dt"]
    return fitting_net


def _learning_rate(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for learning rate section.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with learning rate parameters
    """
    learning_rate = {}
    learning_rate["type"] = "exp"
    _jcopy(jdata, learning_rate, ("decay_steps", "decay_rate", "start_lr"))
    return learning_rate


def _loss(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for loss function.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with loss function parameters
    """
    loss: Dict[str, Any] = {}
    _jcopy(
        jdata,
        loss,
        (
            "start_pref_e",
            "limit_pref_e",
            "start_pref_f",
            "limit_pref_f",
            "start_pref_v",
            "limit_pref_v",
        ),
    )
    if "start_pref_ae" in jdata:
        loss["start_pref_ae"] = jdata["start_pref_ae"]
    if "limit_pref_ae" in jdata:
        loss["limit_pref_ae"] = jdata["limit_pref_ae"]
    return loss


def _training(jdata: Dict[str, Any]) -> Dict[str, Any]:
    """Convert data to v1 input for training.

    Parameters
    ----------
    jdata : Dict[str, Any]
        parsed input json/yaml data

    Returns
    -------
    Dict[str, Any]
        dict with training parameters
    """
    training = {}
    seed = jdata.get("seed", None)
    if seed is not None:
        training["seed"] = seed

    _jcopy(jdata, training, ("systems", "set_prefix", "stop_batch", "batch_size"))
    training["disp_file"] = "lcurve.out"
    if "disp_file" in jdata:
        training["disp_file"] = jdata["disp_file"]
    training["disp_freq"] = j_must_have(jdata, "disp_freq")
    training["numb_test"] = j_must_have(jdata, "numb_test")
    training["save_freq"] = j_must_have(jdata, "save_freq")
    training["save_ckpt"] = j_must_have(jdata, "save_ckpt")
    training["disp_training"] = j_must_have(jdata, "disp_training")
    training["time_training"] = j_must_have(jdata, "time_training")
    if "profiling" in jdata:
        training["profiling"] = jdata["profiling"]
        if training["profiling"]:
            training["profiling_file"] = j_must_have(jdata, "profiling_file")
    return training


def _jcopy(src: Dict[str, Any], dst: Dict[str, Any], keys: Sequence[str]):
    """Copy specified keys from one dict to another.

    Parameters
    ----------
    src : Dict[str, Any]
        source dictionary
    dst : Dict[str, Any]
        destination dictionary, will be modified in place
    keys : Sequence[str]
        list of keys to copy
    must_have : bool
        ensure that the source dictionary contains the copyyied keys
    """
    for k in keys:
        dst[k] = src[k]


def remove_decay_rate(jdata: Dict[str, Any]):
    """convert decay_rate to stop_lr.
    
    Parameters
    ----------
    jdata: Dict[str, Any]
        input data
    """
    lr = jdata["learning_rate"]
    if "decay_rate" in lr:
        decay_rate = lr["decay_rate"]
        start_lr = lr["start_lr"]
        stop_step = jdata["training"]["stop_batch"]
        decay_steps = lr["decay_steps"]
        stop_lr = np.exp(np.log(decay_rate) * (stop_step / decay_steps)) * start_lr
        lr["stop_lr"] = stop_lr
        lr.pop("decay_rate")


def convert_input_v1_v2(jdata: Dict[str, Any],
                        warning: bool = True,
                        dump: Optional[Union[str, Path]] = None) -> Dict[str, Any]:

    tr_cfg = jdata["training"]
    tr_data_keys = {
        "systems",
        "set_prefix",
        "batch_size",
        "sys_prob",
        "auto_prob",
        # alias included
        "sys_weights",
        "auto_prob_style"
    }

    tr_data_cfg = {k: v for k, v in tr_cfg.items() if k in tr_data_keys}
    new_tr_cfg = {k: v for k, v in tr_cfg.items() if k not in tr_data_keys}
    new_tr_cfg["training_data"] = tr_data_cfg

    jdata["training"] = new_tr_cfg

    # remove deprecated arguments
    remove_decay_rate(jdata)

    if warning:
        _warning_input_v1_v2(dump)
    if dump is not None:
        with open(dump, "w") as fp:
            json.dump(jdata, fp, indent=4)

    return jdata


def _warning_input_v1_v2(fname: Optional[Union[str, Path]]):
    msg = "It seems that you are using a deepmd-kit input of version 1.x.x, " \
          "which is deprecated. we have converted the input to >2.0.0 compatible"
    if fname is not None:
        msg += f", and output it to file {fname}"
    warnings.warn(msg)


def deprecate_numb_test(jdata: Dict[str, Any],
                        warning: bool = True,
                        dump: Optional[Union[str, Path]] = None) -> Dict[str, Any]:
    """Deprecate `numb_test` since v2.1. It has taken no effect since v2.0.
    
    See `#1243 <https://github.com/deepmodeling/deepmd-kit/discussions/1243>`_.
    
    Parameters
    ----------
    jdata : Dict[str, Any]
        loaded json/yaml file
    warning : bool, optional
        whether to show deprecation warning, by default True
    dump : Optional[Union[str, Path]], optional
        whether to dump converted file, by default None

    Returns
    -------
    Dict[str, Any]
        converted output
    """
    try:
        jdata.get("training", {}).pop("numb_test")
    except KeyError:
        pass
    else:
        if warning:
            warnings.warn(
                "The argument training->numb_test has been deprecated since v2.0.0. "
                "Use training->validation_data->batch_size instead."
            )

    if dump is not None:
        with open(dump, "w") as fp:
            json.dump(jdata, fp, indent=4)
    return jdata


def update_deepmd_input(jdata: Dict[str, Any],
                        warning: bool = True,
                        dump: Optional[Union[str, Path]] = None) -> Dict[str, Any]:
    def is_deepmd_v0_input(jdata):
        return "model" not in jdata.keys()

    def is_deepmd_v1_input(jdata):
        return "systems" in j_must_have(jdata, "training").keys()

    if is_deepmd_v0_input(jdata):
        jdata = convert_input_v0_v1(jdata, warning, None)
        jdata = convert_input_v1_v2(jdata, False, None)
        jdata = deprecate_numb_test(jdata, False, dump)
    elif is_deepmd_v1_input(jdata):
        jdata = convert_input_v1_v2(jdata, warning, None)
        jdata = deprecate_numb_test(jdata, False, dump)
    else:
        jdata = deprecate_numb_test(jdata, warning, dump)

    return jdata