weight.py 2.65 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

import numpy as np
import logging

from deepmd.env import tf

log = logging.getLogger(__name__)


def get_weight(weights, key):
    r"""Get weight value according to key
    """
    if key in weights.keys():
        return weights[key]
    else:
        log.warning(f"There is not {key} in weights.")
        return None


def get_normalize(weights: dict):
    r"""Get normalize parameter (avg and std) of :math:`s_{ji}`
    """
    key = "descrpt_attr.t_avg"
    avg = get_weight(weights, key)
    key = "descrpt_attr.t_std"
    std = get_weight(weights, key)
    return avg, std


def get_rng_s(weights: dict):
    r"""Guess the range of :math:`s_{ji}`
    """
    avg, std = get_normalize(weights)
    smin = np.min(-avg[:, 0] / std[:, 0])
    smax = np.max(2.0 / std[:, 0])
    return smin, smax


def get_filter_weight(weights: dict, spe_i: int, spe_j: int, layer_l: int):
    r"""Get weight and bias of embedding network

    Parameters
    ----------
    spe_i(int)
        special order of central atom i
        0~ntype-1
    spe_j(int)
        special order of neighbor atom j
        0~ntype-1
    layer_l
        layer order in embedding network
        1~nlayer
    """
    # key = f"filter_type_{spe_i}.matrix_{layer_l}_{spe_j}" # type_one_side = false
    key = f"filter_type_all.matrix_{layer_l}_{spe_j}"  # type_one_side = true
    weight = get_weight(weights, key)
    # key = f"filter_type_{spe_i}.bias_{layer_l}_{spe_j}" # type_one_side = false
    key = f"filter_type_all.bias_{layer_l}_{spe_j}"  # type_one_side = true
    bias = get_weight(weights, key)
    return weight, bias


def get_fitnet_weight(weights: dict, spe_i: int, layer_l: int, nlayer: int = 10):
    r"""Get weight and bias of fitting network

    Parameters
    ----------
    spe_i(int)
        special order of central atom i
        0~ntype-1
    layer_l(int)
        layer order in embedding network
        0~nlayer-1
    """
    if layer_l == nlayer - 1:
        key = f"final_layer_type_{spe_i}.matrix"
        weight = get_weight(weights, key)
        key = f"final_layer_type_{spe_i}.bias"
        bias = get_weight(weights, key)
    else:
        key = f"layer_{layer_l}_type_{spe_i}.matrix"
        weight = get_weight(weights, key)
        key = f"layer_{layer_l}_type_{spe_i}.bias"
        bias = get_weight(weights, key)

    return weight, bias


def get_constant_initializer(weights, name):
    r"""Get initial value by name and create a initializer
    """
    scope = tf.get_variable_scope().name
    name = scope + '.' + name
    value = get_weight(weights, name)
    return tf.constant_initializer(value)