config.py 10.5 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

import numpy as np
import logging

from deepmd.nvnmd.data.data import jdata_config, jdata_configs, jdata_deepmd_input
from deepmd.nvnmd.data.data import NVNMD_WELCOME, NVNMD_CITATION
from deepmd.nvnmd.utils.fio import FioDic

log = logging.getLogger(__name__)


class NvnmdConfig():
    r"""Configuration for NVNMD
    record the message of model such as size, using nvnmd or not

    Parameters
    ----------
    jdata
        a dictionary of input script

    References
    ----------
    DOI: 10.1038/s41524-022-00773-z
    """

    def __init__(
        self,
        jdata: dict
    ):
        self.map = {}
        self.config = jdata_config
        self.save_path = 'nvnmd/config.npy'
        self.weight = {}
        self.init_from_jdata(jdata)

    def init_from_jdata(self, jdata: dict = {}):
        r"""Initial this class with `jdata` loaded from input script
        """
        if jdata == {}:
            return None

        self.net_size = jdata['net_size']
        self.map_file = jdata['map_file']
        self.config_file = jdata['config_file']
        self.enable = jdata['enable']
        self.weight_file = jdata['weight_file']
        self.restore_descriptor = jdata['restore_descriptor']
        self.restore_fitting_net = jdata['restore_fitting_net']
        self.quantize_descriptor = jdata['quantize_descriptor']
        self.quantize_fitting_net = jdata['quantize_fitting_net']

        # load data
        if self.enable:
            self.map = FioDic().load(self.map_file, {})
            self.weight = FioDic().load(self.weight_file, {})

            jdata_config_ = jdata_config.copy()
            jdata_config_['fitn']['neuron'][0] = self.net_size
            load_config = FioDic().load(self.config_file, jdata_config_)
            self.init_from_config(load_config)
            # if load the file, set net_size
            self.init_net_size()

    def init_value(self):
        r"""Initial member with dict
        """
        self.dscp = self.config['dscp']
        self.fitn = self.config['fitn']
        self.size = self.config['size']
        self.ctrl = self.config['ctrl']
        self.nbit = self.config['nbit']

    def init_train_mode(self, mod='cnn'):
        r"""Configure for taining cnn or qnn
        """
        if mod == 'cnn':
            self.restore_descriptor = False
            self.restore_fitting_net = False
            self.quantize_descriptor = False
            self.quantize_fitting_net = False
        elif mod == 'qnn':
            self.restore_descriptor = True
            self.restore_fitting_net = True
            self.quantize_descriptor = True
            self.quantize_fitting_net = True

    def init_from_config(self, jdata):
        r"""Initial member element one by one
        """
        self.config = FioDic().update(jdata, self.config)
        self.config['dscp'] = self.init_dscp(self.config['dscp'], self.config)
        self.config['fitn'] = self.init_fitn(self.config['fitn'], self.config)
        self.config['size'] = self.init_size(self.config['size'], self.config)
        self.config['ctrl'] = self.init_ctrl(self.config['ctrl'], self.config)
        self.config['nbit'] = self.init_nbit(self.config['nbit'], self.config)
        self.init_value()

    def init_net_size(self):
        r"""Initial net_size
        """
        # self.net_size = self.fitn['neuron'][0]
        self.net_size = self.config['fitn']['neuron'][0]
        if self.enable:
            key = str(self.net_size)
            if key in jdata_configs.keys():
                # log.info(f"NVNMD: configure the net_size is {key}")
                self.init_from_config(jdata_configs[key])
            else:
                log.error("NVNMD: don't have the configure of net_size")

    def init_from_deepmd_input(self, jdata):
        r"""Initial members with input script of deepmd
        """
        self.config['dscp'] = FioDic().update(jdata['descriptor'], self.config['dscp'])
        self.config['fitn'] = FioDic().update(jdata['fitting_net'], self.config['fitn'])
        self.config['dscp'] = self.init_dscp(self.config['dscp'], self.config)
        self.config['fitn'] = self.init_fitn(self.config['fitn'], self.config)
        #
        self.init_net_size()
        self.init_value()

    def init_dscp(self, jdata: dict, jdata_parent: dict = {}) -> dict:
        r"""Initial members about descriptor
        """
        jdata['M1'] = jdata['neuron'][-1]
        jdata['M2'] = jdata['axis_neuron']
        jdata['NNODE_FEAS'] = [1] + jdata['neuron']
        jdata['nlayer_fea'] = len(jdata['neuron'])
        jdata['same_net'] = int(1) if jdata['type_one_side'] else int(0)
        jdata['NIDP'] = int(np.sum(jdata['sel']))
        jdata['NIX'] = 2 ** int(np.ceil(np.log2(jdata['NIDP'] / 1.5)))
        jdata['SEL'] = (jdata['sel'] + [0, 0, 0, 0])[0:4]
        jdata['ntype'] = len(jdata['sel'])
        jdata['ntypex'] = 1 if(jdata['same_net']) else jdata['ntype']

        return jdata

    def init_fitn(self, jdata: dict, jdata_parent: dict = {}) -> dict:
        r"""Initial members about fitting network
        """
        M1 = jdata_parent['dscp']['M1']
        M2 = jdata_parent['dscp']['M2']

        jdata['NNODE_FITS'] = [int(M1 * M2)] + jdata['neuron'] + [1]
        jdata['nlayer_fit'] = len(jdata['neuron']) + 1
        jdata['NLAYER'] = jdata['nlayer_fit']

        return jdata

    def init_size(self, jdata: dict, jdata_parent: dict = {}) -> dict:
        r"""Initial members about ram capacity
        """
        jdata['Na'] = jdata['NSPU']
        jdata['NaX'] = jdata['MSPU']
        return jdata

    def init_ctrl(self, jdata: dict, jdata_parent: dict = {}) -> dict:
        r"""Initial members about control signal
        """
        ntype_max = jdata_parent['dscp']['ntype_max']
        jdata['NSADV'] = jdata['NSTDM'] + 1
        jdata['NSEL'] = jdata['NSTDM'] * ntype_max
        if (32 % jdata['NSTDM_M1X'] > 0):
            log.warning("NVNMD: NSTDM_M1X must be divisor of 32 for the right runing in data_merge module")
        return jdata

    def init_nbit(self, jdata: dict, jdata_parent: dict = {}) -> dict:
        r"""Initial members about quantification precision
        """
        Na = jdata_parent['size']['Na']
        NaX = jdata_parent['size']['NaX']
        jdata['NBIT_CRD'] = jdata['NBIT_DATA'] * 3
        jdata['NBIT_LST'] = int(np.ceil(np.log2(NaX)))
        jdata['NBIT_ATOM'] = jdata['NBIT_SPE'] + jdata['NBIT_CRD']
        jdata['NBIT_LONG_ATOM'] = jdata['NBIT_SPE'] + jdata['NBIT_LONG_DATA'] * 3
        jdata['NBIT_RIJ'] = jdata['NBIT_DATA_FL'] + 5
        jdata['NBIT_SUM'] = jdata['NBIT_DATA_FL'] + 8
        jdata['NBIT_DATA2'] = jdata['NBIT_DATA'] + jdata['NBIT_DATA_FL']
        jdata['NBIT_DATA2_FL'] = 2 * jdata['NBIT_DATA_FL']
        jdata['NBIT_DATA_FEA'] = jdata['NBIT_DATA'] + jdata['NBIT_FEA_FL']
        jdata['NBIT_DATA_FEA_FL'] = jdata['NBIT_DATA_FL'] + jdata['NBIT_FEA_FL']
        jdata['NBIT_FORCE_FL'] = 2 * jdata['NBIT_DATA_FL'] - 1
        return jdata

    def save(self, file_name=None):
        r"""Save all configuration to file
        """
        if file_name is None:
            file_name = self.save_path
        else:
            self.save_path = file_name
        FioDic().save(file_name, self.config)

    def get_dscp_jdata(self):
        r"""Generate `model/descriptor` in input script
        """
        dscp = self.dscp
        jdata = jdata_deepmd_input['model']['descriptor']
        jdata['sel'] = dscp['sel']
        jdata['rcut'] = dscp['rcut']
        jdata['rcut_smth'] = dscp['rcut_smth']
        jdata['neuron'] = dscp['neuron']
        jdata['type_one_side'] = dscp['type_one_side']
        jdata['axis_neuron'] = dscp['axis_neuron']
        return jdata

    def get_fitn_jdata(self):
        r"""Generate `model/fitting_net` in input script
        """
        fitn = self.fitn
        jdata = jdata_deepmd_input['model']['fitting_net']
        jdata['neuron'] = fitn['neuron']
        return jdata

    def get_model_jdata(self):
        r"""Generate `model` in input script
        """
        jdata = jdata_deepmd_input['model']
        jdata['descriptor'] = self.get_dscp_jdata()
        jdata['fitting_net'] = self.get_fitn_jdata()
        return jdata

    def get_nvnmd_jdata(self):
        r"""Generate `nvnmd` in input script
        """
        jdata = jdata_deepmd_input['nvnmd']
        jdata['net_size'] = self.net_size
        jdata['config_file'] = self.config_file
        jdata['weight_file'] = self.weight_file
        jdata['map_file'] = self.map_file
        jdata['enable'] = self.enable
        jdata['restore_descriptor'] = self.restore_descriptor
        jdata['restore_fitting_net'] = self.restore_fitting_net
        jdata['quantize_descriptor'] = self.quantize_descriptor
        jdata['quantize_fitting_net'] = self.quantize_fitting_net
        return jdata

    def get_learning_rate_jdata(self):
        r"""Generate `learning_rate` in input script
        """
        return jdata_deepmd_input['learning_rate']

    def get_loss_jdata(self):
        r"""Generate `loss` in input script
        """
        return jdata_deepmd_input['loss']

    def get_training_jdata(self):
        r"""Generate `training` in input script
        """
        return jdata_deepmd_input['training']

    def get_deepmd_jdata(self):
        r"""Generate input script with member element one by one
        """
        jdata = jdata_deepmd_input.copy()
        jdata['model'] = self.get_model_jdata()
        jdata['nvnmd'] = self.get_nvnmd_jdata()
        jdata['learning_rate'] = self.get_learning_rate_jdata()
        jdata['loss'] = self.get_loss_jdata()
        jdata['training'] = self.get_training_jdata()
        return jdata

    def disp_message(self):
        r"""Display the log of NVNMD
        """
        NVNMD_CONFIG = (
            f"enable: {self.enable}",
            f"net_size: {self.net_size}",
            f"map_file: {self.map_file}",
            f"config_file: {self.config_file}",
            f"weight_file: {self.weight_file}",
            f"restore_descriptor: {self.restore_descriptor}",
            f"restore_fitting_net: {self.restore_fitting_net}",
            f"quantize_descriptor: {self.quantize_descriptor}",
            f"quantize_fitting_net: {self.quantize_fitting_net}",
        )
        for message in NVNMD_WELCOME + NVNMD_CITATION + NVNMD_CONFIG:
            log.info(message)


# global configuration for nvnmd
nvnmd_cfg = NvnmdConfig(jdata_deepmd_input['nvnmd'])