"router/client/src/v3/client.rs" did not exist on "fec0167a123eddc60891320dd263e974671ad1c9"
mapt.py 11.1 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

import numpy as np
import logging

from deepmd.env import tf
from deepmd.utils.sess import run_sess

from deepmd.nvnmd.utils.fio import FioDic
from deepmd.nvnmd.utils.config import nvnmd_cfg
from deepmd.nvnmd.utils.weight import get_normalize, get_rng_s, get_filter_weight
from deepmd.nvnmd.utils.network import get_sess

from deepmd.nvnmd.data.data import jdata_deepmd_input

from typing import List, Optional

log = logging.getLogger(__name__)


class MapTable:
    r"""Generate the mapping table describing the relastionship of
    atomic distance, cutoff function, and embedding matrix.

    three mapping table will be built:

    | :math:`r^2_{ji} \rightarrow s_{ji}`
    | :math:`r^2_{ji} \rightarrow sr_{ji}`
    | :math:`r^2_{ji} \rightarrow \mathcal{G}_{ji}`

    where :math:`s_{ji}` is cut-off function,
    :math:`sr_{ji} = \frac{s(r_{ji})}{r_{ji}}`, and
    :math:`\mathcal{G}_{ji}` is embedding matrix.

    The mapping funciton can be define as:

    | :math:`y = f(x) = y_{k} + (x - x_{k}) * dy_{k}`
    | :math:`y_{k} = f(x_{k})`
    | :math:`dy_{k} = \frac{f(x_{k+1}) - f(x_{k})}{dx}`
    | :math:`x_{k} \leq x < x_{k+1}`
    | :math:`x_{k} = k * dx`

    where :math:`dx` is interpolation interval.

    Parameters
    ----------
    config_file
        input file name
        an .npy file containing the configuration information of NVNMD model
    weight_file
        input file name
        an .npy file containing the weights of NVNMD model
    map_file
        output file name
        an .npy file containing the mapping tables of NVNMD model

    References
    ----------
    DOI: 10.1038/s41524-022-00773-z
    """

    def __init__(
            self,
            config_file: str,
            weight_file: str,
            map_file: str
    ):
        self.config_file = config_file
        self.weight_file = weight_file
        self.map_file = map_file

        jdata = jdata_deepmd_input['nvnmd']
        jdata['config_file'] = config_file
        jdata['weight_file'] = weight_file
        jdata['enable'] = True

        nvnmd_cfg.init_from_jdata(jdata)
        # map_table = self.build_map()

    def qqq(self, dat, NBIT_FEA_FL, NBIT_FEA_X, is_set_zero=False):
        dat = dat if isinstance(dat, list) else [dat]
        prec = 2 ** NBIT_FEA_FL
        N = int(2 ** NBIT_FEA_X)
        #
        dat2 = []
        for ii in range(len(dat)):
            dati = dat[ii]
            vi = dati[:-1]  # i
            vi1 = dati[1:]  # i+1
            # v = vi + dvi * (r - ri)
            # ri = i * dt
            # dvi = v(i+1) / dt
            vi = np.round(vi * prec) / prec
            vi1 = np.round(vi1 * prec) / prec
            dvi = vi1 - vi
            if is_set_zero:
                dvi[0] = 0
            #
            v = [np.reshape(vp, [N, -1]) for vp in [vi, dvi]]
            dat2.append(v)
        return dat2

    def build_map(self):
        ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']
        NBIT_FEA_FL = nvnmd_cfg.nbit['NBIT_FEA_FL']
        NBIT_FEA_X = nvnmd_cfg.nbit['NBIT_FEA_X']

        dic = self.run_u2s()
        dic.update(self.run_s2G(dic))

        # quantize s and G
        prec = 2**NBIT_FEA_FL
        for tt in range(ntypex):
            dic['s'][tt][0] = np.round(dic['s'][tt][0] * prec) / prec
            dic['sr'][tt][0] = np.round(dic['sr'][tt][0] * prec) / prec
            for tt2 in range(ntype):
                v = np.round(dic['G'][tt * ntype + tt2][0] * prec) / prec
                dic['G'][tt * ntype + tt2][0] = v

        maps = {}
        keys = 's,sr,ds_dr2,dsr_dr2,G,dG_ds'.split(',')
        keys2 = 'G,dG_ds'.split(',')
        for key in keys:
            val = self.qqq(dic[key], NBIT_FEA_FL, NBIT_FEA_X, key not in keys2)
            maps[key] = val

        N = int(2**NBIT_FEA_X)
        maps2 = {}
        maps2['r2'] = dic['r2'][0:N]
        maps2['s2'] = dic['s2'][0:N]
        for tt in range(ntypex):
            for tt2 in range(ntype):
                postfix = f'_t{tt}_t{tt2}'
                for key in keys:
                    maps2[key + postfix] = []
                    maps2[key + postfix].append(maps[key][tt * ntype + tt2][0].reshape([N, -1]))
                    maps2[key + postfix].append(maps[key][tt * ntype + tt2][1].reshape([N, -1]))
        self.map = maps2

        FioDic().save(self.map_file, self.map)
        log.info("NVNMD: finish building mapping table")
        return self.map

# =====================================================================
# build r2s
# =====================================================================

    def build_r2s(self, r2):
        # limit = nvnmd_cfg.dscp['rc_lim']
        rmin = nvnmd_cfg.dscp['rcut_smth']
        rmax = nvnmd_cfg.dscp['rcut']
        # ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']
        avg, std = get_normalize(nvnmd_cfg.weight)
        avg, std = np.float32(avg), np.float32(std)
        r = tf.sqrt(r2)
        r_ = tf.clip_by_value(r, rmin, rmax)
        r__ = tf.clip_by_value(r, 0, rmax)
        uu = (r_ - rmin) / (rmax - rmin)
        vv = uu * uu * uu * (-6 * uu * uu + 15 * uu - 10) + 1

        sl = []
        srl = []

        for tt in range(ntype):
            s = vv / r__
            sr = s / r__
            s = tf.reshape(s, [-1, 1])
            sr = tf.reshape(sr, [-1, 1])
            s = (s - avg[tt, 0]) / std[tt, 0]
            sr = sr / std[tt, 1]
            sl.append(s)
            srl.append(sr)
        return sl, srl

    def build_ds_dr(self, r2, s, sr):
        # ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']

        ds_drl = []
        dsr_drl = []
        for tt in range(ntype):
            si = s[tt]
            sri = sr[tt]
            ds_dr = tf.gradients(si, r2)
            dsr_dr = tf.gradients(sri, r2)
            ds_drl.append(ds_dr[0])
            dsr_drl.append(dsr_dr[0])
        return ds_drl, dsr_drl

    def build_r2s_r2ds(self):
        dic_ph = {}
        dic_ph['r2'] = tf.placeholder(tf.float32, [None, 1], 't_r2')
        dic_ph['s'], dic_ph['sr'] = self.build_r2s(dic_ph['r2'])
        dic_ph['ds_dr2'], dic_ph['dsr_dr2'] = self.build_ds_dr(dic_ph['r2'], dic_ph['s'], dic_ph['sr'])

        return dic_ph

    def run_u2s(self):
        # ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']
        avg, std = get_normalize(nvnmd_cfg.weight)
        avg, std = np.float32(avg), np.float32(std)
        NBIT_FEA_X = nvnmd_cfg.nbit['NBIT_FEA_X']
        NBIT_FEA_X_FL = nvnmd_cfg.nbit['NBIT_FEA_X_FL']

        dic_ph = self.build_r2s_r2ds()
        sess = get_sess()

        N = 2 ** NBIT_FEA_X
        N2 = 2 ** NBIT_FEA_X_FL
        # N+1 ranther than N for calculating defference
        r2 = 1.0 * np.arange(0, N + 1) / N2
        r2 = np.reshape(r2, [-1, 1])
        feed_dic = {dic_ph['r2']: r2}
        key = 'r2,s,sr,ds_dr2,dsr_dr2'
        tlst = [dic_ph[k] for k in key.split(',')]
        # res = sess.run(tlst, feed_dic)
        res = run_sess(sess, tlst, feed_dict=feed_dic)

        res2 = {}
        key = key.split(',')
        for ii in range(len(key)):
            res2[key[ii]] = res[ii]

        # change value
        # set 0 value, when u=0
        for tt in range(ntype):
            res2['s'][tt][0] = -avg[tt, 0] / std[tt, 0]
            res2['sr'][tt][0] = 0
            res2['ds_dr2'][tt][0] = 0
            res2['dsr_dr2'][tt][0] = 0

        # r = np.sqrt(res2['r2'])
        sess.close()

        return res2
# =====================================================================
# build s2G
# =====================================================================

    def build_s2G(self, s):
        ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']

        activation_fn = tf.tanh
        outputs_size = nvnmd_cfg.dscp['NNODE_FEAS']

        xyz_scatters = []
        for tt in range(ntypex):
            for tt2 in range(ntype):
                xyz_scatter = s
                for ll in range(1, len(outputs_size)):
                    w, b = get_filter_weight(nvnmd_cfg.weight, tt, tt2, ll)
                    w, b = np.float32(w), np.float32(b)
                    if outputs_size[ll] == outputs_size[ll - 1]:
                        xyz_scatter += activation_fn(tf.matmul(xyz_scatter, w) + b)
                    elif outputs_size[ll] == outputs_size[ll - 1] * 2:
                        xyz_scatter = tf.concat([xyz_scatter, xyz_scatter], 1) + activation_fn(tf.matmul(xyz_scatter, w) + b)
                    else:
                        xyz_scatter = activation_fn(tf.matmul(xyz_scatter, w) + b)
                xyz_scatters.append(xyz_scatter)
        return xyz_scatters

    def build_dG_ds(self, G, s):
        ntypex = nvnmd_cfg.dscp['ntypex']
        ntype = nvnmd_cfg.dscp['ntype']
        M1 = nvnmd_cfg.dscp['M1']

        dG_ds = []
        for tt in range(ntypex):
            for tt2 in range(ntype):
                Gi = G[tt * ntype + tt2]
                si = s

                dG_ds_i = []
                for ii in range(M1):
                    dG_ds_ii = tf.reshape(tf.gradients(Gi[:, ii], si), [-1, 1])
                    dG_ds_i.append(dG_ds_ii)
                dG_ds_i = tf.concat(dG_ds_i, axis=1)
                dG_ds.append(dG_ds_i)
        return dG_ds

    def build_s2G_s2dG(self):
        # ntypex = nvnmd_cfg.dscp['ntypex']
        dic_ph = {}
        dic_ph['s2'] = tf.placeholder(tf.float32, [None, 1], 't_s')
        dic_ph['G'] = self.build_s2G(dic_ph['s2'])
        dic_ph['dG_ds'] = self.build_dG_ds(dic_ph['G'], dic_ph['s2'])
        return dic_ph

    def run_s2G(self, dat):
        NBIT_FEA_FL = nvnmd_cfg.nbit['NBIT_FEA_FL']
        NBIT_FEA_X = nvnmd_cfg.nbit['NBIT_FEA_X']
        NBIT_FEA_X2_FL = nvnmd_cfg.nbit['NBIT_FEA_X2_FL']
        prec = 2 ** NBIT_FEA_FL

        dic_ph = self.build_s2G_s2dG()
        sess = get_sess()

        N = 2 ** NBIT_FEA_X
        N2 = 2 ** NBIT_FEA_X2_FL
        s_min, s_max = get_rng_s(nvnmd_cfg.weight)
        #
        if (s_min < -2.0) or (s_max > 14.0):
            log.warning(f"the range of s [{s_min}, {s_max}] is over the limit [-2.0, 14.0]")
        s_min = -2.0
        s = s_min + np.arange(0, N + 1) / N2
        s = np.reshape(s, [-1, 1])
        feed_dic = {dic_ph['s2']: s}

        feed_dic = {dic_ph['s2']: s}
        key = 's2,G,dG_ds'
        tlst = [dic_ph[k] for k in key.split(',')]
        # res = sess.run(tlst, feed_dic)
        res = run_sess(sess, tlst, feed_dict=feed_dic)

        res2 = {}
        key = key.split(',')
        for ii in range(len(key)):
            res2[key[ii]] = res[ii]

        sess.close()
        return res2


def mapt(
    *,
    nvnmd_config: Optional[str] = 'nvnmd/config.npy',
    nvnmd_weight: Optional[str] = 'nvnmd/weight.npy',
    nvnmd_map: Optional[str] = 'nvnmd/map.npy',
    **kwargs
):
    # build mapping table
    mapObj = MapTable(nvnmd_config, nvnmd_weight, nvnmd_map)
    mapObj.build_map()