"magic_pdf/para/para_split_v2.py" did not exist on "8e3beebd1ae0975a8d86c91ff9c3a9ba66e907cb"
ener.py 14.3 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import numpy as np
from typing import Tuple, List

from deepmd.env import tf
from deepmd.utils.pair_tab import PairTab
from deepmd.utils.graph import load_graph_def, get_tensor_by_name_from_graph
from deepmd.utils.errors import GraphWithoutTensorError
from deepmd.common import ClassArg
from deepmd.env import global_cvt_2_ener_float, MODEL_VERSION, GLOBAL_TF_FLOAT_PRECISION
from deepmd.env import op_module
from .model import Model
from .model_stat import make_stat_input, merge_sys_stat

class EnerModel(Model) :
    """Energy model.
    
    Parameters
    ----------
    descrpt
            Descriptor
    fitting
            Fitting net
    type_map
            Mapping atom type to the name (str) of the type.
            For example `type_map[1]` gives the name of the type 1.
    data_stat_nbatch
            Number of frames used for data statistic
    data_stat_protect
            Protect parameter for atomic energy regression
    use_srtab
            The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.
    smin_alpha
            The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when `use_srtab` is provided.
    sw_rmin
            The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when `use_srtab` is provided.
    sw_rmin
            The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when `use_srtab` is provided.
    """
    model_type = 'ener'

    def __init__ (
            self, 
            descrpt, 
            fitting, 
            typeebd = None,
            type_map : List[str] = None,
            data_stat_nbatch : int = 10,
            data_stat_protect : float = 1e-2,
            use_srtab : str = None,
            smin_alpha : float = None,
            sw_rmin : float = None,
            sw_rmax : float = None
    ) -> None:
        """
        Constructor
        """
        # descriptor
        self.descrpt = descrpt
        self.rcut = self.descrpt.get_rcut()
        self.ntypes = self.descrpt.get_ntypes()
        # fitting
        self.fitting = fitting
        self.numb_fparam = self.fitting.get_numb_fparam()
        # type embedding
        self.typeebd = typeebd
        # other inputs
        if type_map is None:
            self.type_map = []
        else:
            self.type_map = type_map
        self.data_stat_nbatch = data_stat_nbatch
        self.data_stat_protect = data_stat_protect
        self.srtab_name = use_srtab
        if self.srtab_name is not None :
            self.srtab = PairTab(self.srtab_name)
            self.smin_alpha = smin_alpha
            self.sw_rmin = sw_rmin
            self.sw_rmax = sw_rmax
        else :
            self.srtab = None


    def get_rcut (self) :
        return self.rcut

    def get_ntypes (self) :
        return self.ntypes

    def get_type_map (self) :
        return self.type_map

    def data_stat(self, data):
        all_stat = make_stat_input(data, self.data_stat_nbatch, merge_sys = False)
        m_all_stat = merge_sys_stat(all_stat)
        self._compute_input_stat(m_all_stat, protection=self.data_stat_protect, mixed_type=data.mixed_type)
        self._compute_output_stat(all_stat, mixed_type=data.mixed_type)
        # self.bias_atom_e = data.compute_energy_shift(self.rcond)

    def _compute_input_stat (self, all_stat, protection=1e-2, mixed_type=False):
        if mixed_type:
            self.descrpt.compute_input_stats(all_stat['coord'],
                                             all_stat['box'],
                                             all_stat['type'],
                                             all_stat['natoms_vec'],
                                             all_stat['default_mesh'],
                                             all_stat,
                                             mixed_type,
                                             all_stat['real_natoms_vec'])
        else:
            self.descrpt.compute_input_stats(all_stat['coord'],
                                             all_stat['box'],
                                             all_stat['type'],
                                             all_stat['natoms_vec'],
                                             all_stat['default_mesh'],
                                             all_stat)
        self.fitting.compute_input_stats(all_stat, protection=protection)

    def _compute_output_stat (self, all_stat, mixed_type=False):
        if mixed_type:
            self.fitting.compute_output_stats(all_stat, mixed_type=mixed_type)
        else:
            self.fitting.compute_output_stats(all_stat)


    def build (self, 
               coord_, 
               atype_,
               natoms,
               box, 
               mesh,
               input_dict,
               frz_model = None,
               suffix = '', 
               reuse = None):
 
        if input_dict is None:
            input_dict = {}
        with tf.variable_scope('model_attr' + suffix, reuse = reuse) :
            t_tmap = tf.constant(' '.join(self.type_map), 
                                 name = 'tmap', 
                                 dtype = tf.string)
            t_mt = tf.constant(self.model_type, 
                               name = 'model_type', 
                               dtype = tf.string)
            t_ver = tf.constant(MODEL_VERSION,
                                name = 'model_version',
                                dtype = tf.string)

            if self.srtab is not None :
                tab_info, tab_data = self.srtab.get()
                self.tab_info = tf.get_variable('t_tab_info',
                                                tab_info.shape,
                                                dtype = tf.float64,
                                                trainable = False,
                                                initializer = tf.constant_initializer(tab_info, dtype = tf.float64))
                self.tab_data = tf.get_variable('t_tab_data',
                                                tab_data.shape,
                                                dtype = tf.float64,
                                                trainable = False,
                                                initializer = tf.constant_initializer(tab_data, dtype = tf.float64))

        coord = tf.reshape (coord_, [-1, natoms[1] * 3])
        atype = tf.reshape (atype_, [-1, natoms[1]])
        input_dict['nframes'] = tf.shape(coord)[0]

        # type embedding if any
        if self.typeebd is not None:
            type_embedding = self.typeebd.build(
                self.ntypes,
                reuse = reuse,
                suffix = suffix,
            )
            input_dict['type_embedding'] = type_embedding
            input_dict['atype'] = atype_

        if frz_model == None:
            dout \
                = self.descrpt.build(coord_,
                                     atype_,
                                     natoms,
                                     box,
                                     mesh,
                                     input_dict,
                                     suffix = suffix,
                                     reuse = reuse)
            dout = tf.identity(dout, name='o_descriptor')
        else:
            tf.constant(self.rcut,
                name = 'descrpt_attr/rcut',
                dtype = GLOBAL_TF_FLOAT_PRECISION)
            tf.constant(self.ntypes,
                name = 'descrpt_attr/ntypes',
                dtype = tf.int32)
            feed_dict = self.descrpt.get_feed_dict(coord_, atype_, natoms, box, mesh)
            return_elements = [*self.descrpt.get_tensor_names(), 'o_descriptor:0']
            imported_tensors \
                = self._import_graph_def_from_frz_model(frz_model, feed_dict, return_elements)
            dout = imported_tensors[-1]
            self.descrpt.pass_tensors_from_frz_model(*imported_tensors[:-1])


        if self.srtab is not None :
            nlist, rij, sel_a, sel_r = self.descrpt.get_nlist()
            nnei_a = np.cumsum(sel_a)[-1]
            nnei_r = np.cumsum(sel_r)[-1]

        atom_ener = self.fitting.build (dout, 
                                        natoms, 
                                        input_dict, 
                                        reuse = reuse, 
                                        suffix = suffix)
        self.atom_ener = atom_ener

        if self.srtab is not None :
            sw_lambda, sw_deriv \
                = op_module.soft_min_switch(atype, 
                                            rij, 
                                            nlist,
                                            natoms,
                                            sel_a = sel_a,
                                            sel_r = sel_r,
                                            alpha = self.smin_alpha,
                                            rmin = self.sw_rmin,
                                            rmax = self.sw_rmax)            
            inv_sw_lambda = 1.0 - sw_lambda
            # NOTICE:
            # atom energy is not scaled, 
            # force and virial are scaled
            tab_atom_ener, tab_force, tab_atom_virial \
                = op_module.pair_tab(self.tab_info,
                                      self.tab_data,
                                      atype,
                                      rij,
                                      nlist,
                                      natoms,
                                      sw_lambda,
                                      sel_a = sel_a,
                                      sel_r = sel_r)
            energy_diff = tab_atom_ener - tf.reshape(atom_ener, [-1, natoms[0]])
            tab_atom_ener = tf.reshape(sw_lambda, [-1]) * tf.reshape(tab_atom_ener, [-1])
            atom_ener = tf.reshape(inv_sw_lambda, [-1]) * atom_ener
            energy_raw = tab_atom_ener + atom_ener
        else :
            energy_raw = atom_ener

        energy_raw = tf.reshape(energy_raw, [-1, natoms[0]], name = 'o_atom_energy'+suffix)
        energy = tf.reduce_sum(global_cvt_2_ener_float(energy_raw), axis=1, name='o_energy'+suffix)

        force, virial, atom_virial \
            = self.descrpt.prod_force_virial (atom_ener, natoms)

        if self.srtab is not None :
            sw_force \
                = op_module.soft_min_force(energy_diff, 
                                           sw_deriv,
                                           nlist, 
                                           natoms,
                                           n_a_sel = nnei_a,
                                           n_r_sel = nnei_r)
            force = force + sw_force + tab_force

        force = tf.reshape (force, [-1, 3 * natoms[1]], name = "o_force"+suffix)

        if self.srtab is not None :
            sw_virial, sw_atom_virial \
                = op_module.soft_min_virial (energy_diff,
                                             sw_deriv,
                                             rij,
                                             nlist,
                                             natoms,
                                             n_a_sel = nnei_a,
                                             n_r_sel = nnei_r)
            atom_virial = atom_virial + sw_atom_virial + tab_atom_virial
            virial = virial + sw_virial \
                     + tf.reduce_sum(tf.reshape(tab_atom_virial, [-1, natoms[1], 9]), axis = 1)

        virial = tf.reshape (virial, [-1, 9], name = "o_virial"+suffix)
        atom_virial = tf.reshape (atom_virial, [-1, 9 * natoms[1]], name = "o_atom_virial"+suffix)

        model_dict = {}
        model_dict['energy'] = energy
        model_dict['force'] = force
        model_dict['virial'] = virial
        model_dict['atom_ener'] = energy_raw
        model_dict['atom_virial'] = atom_virial
        model_dict['coord'] = coord
        model_dict['atype'] = atype
        
        return model_dict

    def _import_graph_def_from_frz_model(self, frz_model, feed_dict, return_elements):
        graph, graph_def = load_graph_def(frz_model)
        return tf.import_graph_def(graph_def, input_map = feed_dict, return_elements = return_elements, name = "")

    def init_variables(self,
                       graph : tf.Graph,
                       graph_def : tf.GraphDef,
                       model_type : str = "original_model",
                       suffix : str = "",
    ) -> None:
        """
        Init the embedding net variables with the given frozen model

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        model_type : str
            the type of the model
        suffix : str
            suffix to name scope
        """
        # self.frz_model will control the self.model to import the descriptor from the given frozen model instead of building from scratch...
        # initialize fitting net with the given compressed frozen model
        if model_type == 'original_model':
            self.descrpt.init_variables(graph, graph_def, suffix=suffix)
            self.fitting.init_variables(graph, graph_def, suffix=suffix)
            tf.constant("original_model", name = 'model_type', dtype = tf.string)
        elif model_type == 'compressed_model':
            self.fitting.init_variables(graph, graph_def, suffix=suffix)
            tf.constant("compressed_model", name = 'model_type', dtype = tf.string)
        else:
            raise RuntimeError("Unknown model type %s" % model_type)
        if self.typeebd is not None:
            self.typeebd.init_variables(graph, graph_def, suffix=suffix)