ener.py 17.8 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import numpy as np
from deepmd.env import tf
from deepmd.common import ClassArg, add_data_requirement

from deepmd.env import global_cvt_2_tf_float
from deepmd.env import global_cvt_2_ener_float
from deepmd.utils.sess import run_sess
from .loss import Loss


class EnerStdLoss (Loss) :
    """
    Standard loss function for DP models

    Parameters
    ----------
    enable_atom_ener_coeff : bool
        if true, the energy will be computed as \sum_i c_i E_i
    """
    def __init__ (self, 
                  starter_learning_rate : float, 
                  start_pref_e : float = 0.02,
                  limit_pref_e : float = 1.00,
                  start_pref_f : float = 1000,
                  limit_pref_f : float = 1.00,
                  start_pref_v : float = 0.0,
                  limit_pref_v : float = 0.0,
                  start_pref_ae : float = 0.0,
                  limit_pref_ae : float = 0.0,
                  start_pref_pf : float = 0.0,
                  limit_pref_pf : float = 0.0,
                  relative_f : float = None,
                  enable_atom_ener_coeff: bool=False,
    ) -> None:
        self.starter_learning_rate = starter_learning_rate
        self.start_pref_e = start_pref_e
        self.limit_pref_e = limit_pref_e
        self.start_pref_f = start_pref_f
        self.limit_pref_f = limit_pref_f
        self.start_pref_v = start_pref_v
        self.limit_pref_v = limit_pref_v
        self.start_pref_ae = start_pref_ae
        self.limit_pref_ae = limit_pref_ae
        self.start_pref_pf = start_pref_pf
        self.limit_pref_pf = limit_pref_pf
        self.relative_f = relative_f
        self.enable_atom_ener_coeff = enable_atom_ener_coeff
        self.has_e = (self.start_pref_e != 0.0 or self.limit_pref_e != 0.0)
        self.has_f = (self.start_pref_f != 0.0 or self.limit_pref_f != 0.0)
        self.has_v = (self.start_pref_v != 0.0 or self.limit_pref_v != 0.0)
        self.has_ae = (self.start_pref_ae != 0.0 or self.limit_pref_ae != 0.0)
        self.has_pf = (self.start_pref_pf != 0.0 or self.limit_pref_pf != 0.0)
        # data required
        add_data_requirement('energy', 1, atomic=False, must=False, high_prec=True)
        add_data_requirement('force',  3, atomic=True,  must=False, high_prec=False)
        add_data_requirement('virial', 9, atomic=False, must=False, high_prec=False)
        add_data_requirement('atom_ener', 1, atomic=True, must=False, high_prec=False)
        add_data_requirement('atom_pref', 1, atomic=True, must=False, high_prec=False, repeat=3)
        if self.enable_atom_ener_coeff:
            add_data_requirement('atom_ener_coeff', 1, atomic=True, must=False, high_prec=False, default=1.)

    def build (self, 
               learning_rate,
               natoms,
               model_dict,
               label_dict,
               suffix):        
        energy = model_dict['energy']
        force = model_dict['force']
        virial = model_dict['virial']
        atom_ener = model_dict['atom_ener']
        energy_hat = label_dict['energy']
        force_hat = label_dict['force']
        virial_hat = label_dict['virial']
        atom_ener_hat = label_dict['atom_ener']
        atom_pref = label_dict['atom_pref']
        find_energy = label_dict['find_energy']
        find_force = label_dict['find_force']
        find_virial = label_dict['find_virial']
        find_atom_ener = label_dict['find_atom_ener']                
        find_atom_pref = label_dict['find_atom_pref']                

        if self.enable_atom_ener_coeff:
            # when ener_coeff (\nu) is defined, the energy is defined as 
            # E = \sum_i \nu_i E_i
            # instead of the sum of atomic energies.
            #
            # A case is that we want to train reaction energy
            # A + B -> C + D
            # E = - E(A) - E(B) + E(C) + E(D)
            # A, B, C, D could be put far away from each other
            atom_ener_coeff = label_dict['atom_ener_coeff']
            atom_ener_coeff = tf.reshape(atom_ener_coeff, tf.shape(atom_ener))
            energy = tf.reduce_sum(atom_ener_coeff * atom_ener, 1)
        l2_ener_loss = tf.reduce_mean( tf.square(energy - energy_hat), name='l2_'+suffix)

        force_reshape = tf.reshape (force, [-1])
        force_hat_reshape = tf.reshape (force_hat, [-1])
        atom_pref_reshape = tf.reshape (atom_pref, [-1])
        diff_f = force_hat_reshape - force_reshape
        if self.relative_f is not None:            
            force_hat_3 = tf.reshape(force_hat, [-1, 3])
            norm_f = tf.reshape(tf.norm(force_hat_3, axis = 1), [-1, 1]) + self.relative_f
            diff_f_3 = tf.reshape(diff_f, [-1, 3])
            diff_f_3 = diff_f_3 / norm_f
            diff_f = tf.reshape(diff_f_3, [-1])
        l2_force_loss = tf.reduce_mean(tf.square(diff_f), name = "l2_force_" + suffix)
        l2_pref_force_loss = tf.reduce_mean(tf.multiply(tf.square(diff_f), atom_pref_reshape), name = "l2_pref_force_" + suffix)

        virial_reshape = tf.reshape (virial, [-1])
        virial_hat_reshape = tf.reshape (virial_hat, [-1])
        l2_virial_loss = tf.reduce_mean (tf.square(virial_hat_reshape - virial_reshape), name = "l2_virial_" + suffix)

        atom_ener_reshape = tf.reshape (atom_ener, [-1])
        atom_ener_hat_reshape = tf.reshape (atom_ener_hat, [-1])
        l2_atom_ener_loss = tf.reduce_mean (tf.square(atom_ener_hat_reshape - atom_ener_reshape), name = "l2_atom_ener_" + suffix)

        atom_norm  = 1./ global_cvt_2_tf_float(natoms[0]) 
        atom_norm_ener  = 1./ global_cvt_2_ener_float(natoms[0]) 
        pref_e = global_cvt_2_ener_float(find_energy * (self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * learning_rate / self.starter_learning_rate) )
        pref_f = global_cvt_2_tf_float(find_force * (self.limit_pref_f + (self.start_pref_f - self.limit_pref_f) * learning_rate / self.starter_learning_rate) )
        pref_v = global_cvt_2_tf_float(find_virial * (self.limit_pref_v + (self.start_pref_v - self.limit_pref_v) * learning_rate / self.starter_learning_rate) )
        pref_ae= global_cvt_2_tf_float(find_atom_ener * (self.limit_pref_ae+ (self.start_pref_ae-self.limit_pref_ae) * learning_rate / self.starter_learning_rate) )
        pref_pf= global_cvt_2_tf_float(find_atom_pref * (self.limit_pref_pf+ (self.start_pref_pf-self.limit_pref_pf) * learning_rate / self.starter_learning_rate) )

        l2_loss = 0
        more_loss = {}
        if self.has_e :
            l2_loss += atom_norm_ener * (pref_e * l2_ener_loss)
        more_loss['l2_ener_loss'] = l2_ener_loss
        if self.has_f :
            l2_loss += global_cvt_2_ener_float(pref_f * l2_force_loss)
        more_loss['l2_force_loss'] = l2_force_loss
        if self.has_v :
            l2_loss += global_cvt_2_ener_float(atom_norm * (pref_v * l2_virial_loss))
        more_loss['l2_virial_loss'] = l2_virial_loss
        if self.has_ae :
            l2_loss += global_cvt_2_ener_float(pref_ae * l2_atom_ener_loss)
        more_loss['l2_atom_ener_loss'] = l2_atom_ener_loss
        if self.has_pf :
            l2_loss += global_cvt_2_ener_float(pref_pf * l2_pref_force_loss)
        more_loss['l2_pref_force_loss'] = l2_pref_force_loss

        # only used when tensorboard was set as true
        self.l2_loss_summary = tf.summary.scalar('l2_loss', tf.sqrt(l2_loss))
        self.l2_loss_ener_summary = tf.summary.scalar('l2_ener_loss', global_cvt_2_tf_float(tf.sqrt(l2_ener_loss)) / global_cvt_2_tf_float(natoms[0]))
        self.l2_loss_force_summary = tf.summary.scalar('l2_force_loss', tf.sqrt(l2_force_loss))
        self.l2_loss_virial_summary = tf.summary.scalar('l2_virial_loss', tf.sqrt(l2_virial_loss) / global_cvt_2_tf_float(natoms[0]))

        self.l2_l = l2_loss
        self.l2_more = more_loss
        return l2_loss, more_loss

    def eval(self, sess, feed_dict, natoms):
        placeholder = self.l2_l
        run_data = [
            self.l2_l,
            self.l2_more['l2_ener_loss'] if self.has_e else placeholder,
            self.l2_more['l2_force_loss'] if self.has_f else placeholder,
            self.l2_more['l2_virial_loss'] if self.has_v else placeholder,
            self.l2_more['l2_atom_ener_loss'] if self.has_ae else placeholder,
            self.l2_more['l2_pref_force_loss'] if self.has_pf else placeholder,
        ]
        error, error_e, error_f, error_v, error_ae, error_pf = run_sess(sess, run_data, feed_dict=feed_dict)
        results = {"natoms": natoms[0], "rmse": np.sqrt(error)}
        if self.has_e:
            results["rmse_e"] = np.sqrt(error_e) / natoms[0]
        if self.has_ae:
            results["rmse_ae"] = np.sqrt(error_ae)
        if self.has_f:
            results["rmse_f"] = np.sqrt(error_f)
        if self.has_v:
            results["rmse_v"] = np.sqrt(error_v) / natoms[0]
        if self.has_pf:
            results["rmse_pf"] = np.sqrt(error_pf)
        return results

    def print_header(self):  # depreciated
        prop_fmt = '   %11s %11s'
        print_str = ''
        print_str += prop_fmt % ('rmse_tst', 'rmse_trn')
        if self.has_e :
            print_str += prop_fmt % ('rmse_e_tst', 'rmse_e_trn')
        if self.has_ae :
            print_str += prop_fmt % ('rmse_ae_tst', 'rmse_ae_trn')
        if self.has_f :
            print_str += prop_fmt % ('rmse_f_tst', 'rmse_f_trn')
        if self.has_v :
            print_str += prop_fmt % ('rmse_v_tst', 'rmse_v_trn')
        if self.has_pf :
            print_str += prop_fmt % ('rmse_pf_tst', 'rmse_pf_trn')
        return print_str

    def print_on_training(self, 
                          tb_writer,
                          cur_batch,
                          sess, 
                          natoms,
                          feed_dict_test,
                          feed_dict_batch):  # depreciated

        run_data = [
            self.l2_l,
            self.l2_more['l2_ener_loss'],
            self.l2_more['l2_force_loss'],
            self.l2_more['l2_virial_loss'],
            self.l2_more['l2_atom_ener_loss'],
            self.l2_more['l2_pref_force_loss']
        ]

        # first train data
        train_out = run_sess(sess, run_data, feed_dict=feed_dict_batch)
        error_train, error_e_train, error_f_train, error_v_train, error_ae_train, error_pf_train = train_out

        # than test data, if tensorboard log writter is present, commpute summary
        # and write tensorboard logs
        if tb_writer:
            summary_merged_op = tf.summary.merge([self.l2_loss_summary, self.l2_loss_ener_summary, self.l2_loss_force_summary, self.l2_loss_virial_summary])
            run_data.insert(0, summary_merged_op)

        test_out = run_sess(sess, run_data, feed_dict=feed_dict_test)

        if tb_writer:
            summary = test_out.pop(0)
            tb_writer.add_summary(summary, cur_batch)

        error_test, error_e_test, error_f_test, error_v_test, error_ae_test, error_pf_test = test_out

        
        print_str = ""
        prop_fmt = "   %11.2e %11.2e"
        print_str += prop_fmt % (np.sqrt(error_test), np.sqrt(error_train))
        if self.has_e :
            print_str += prop_fmt % (np.sqrt(error_e_test) / natoms[0], np.sqrt(error_e_train) / natoms[0])
        if self.has_ae :
            print_str += prop_fmt % (np.sqrt(error_ae_test), np.sqrt(error_ae_train))
        if self.has_f :
            print_str += prop_fmt % (np.sqrt(error_f_test), np.sqrt(error_f_train))
        if self.has_v :
            print_str += prop_fmt % (np.sqrt(error_v_test) / natoms[0], np.sqrt(error_v_train) / natoms[0])
        if self.has_pf:
            print_str += prop_fmt % (np.sqrt(error_pf_test), np.sqrt(error_pf_train))

        return print_str      


class EnerDipoleLoss (Loss) :
    def __init__ (self, 
                  starter_learning_rate : float,
                  start_pref_e : float = 0.1,
                  limit_pref_e : float = 1.0,
                  start_pref_ed : float = 1.0,
                  limit_pref_ed : float = 1.0
    ) -> None :
        self.starter_learning_rate = kwarg['starter_learning_rate']
        args = ClassArg()\
            .add('start_pref_e',        float,  must = True, default = 0.1) \
            .add('limit_pref_e',        float,  must = True, default = 1.00)\
            .add('start_pref_ed',       float,  must = True, default = 1.00)\
            .add('limit_pref_ed',       float,  must = True, default = 1.00)
        class_data = args.parse(jdata)
        self.start_pref_e = class_data['start_pref_e']
        self.limit_pref_e = class_data['limit_pref_e']
        self.start_pref_ed = class_data['start_pref_ed']
        self.limit_pref_ed = class_data['limit_pref_ed']
        # data required
        add_data_requirement('energy', 1, atomic=False, must=True, high_prec=True)
        add_data_requirement('energy_dipole', 3, atomic=False, must=True, high_prec=False)

    def build (self, 
               learning_rate,
               natoms,
               model_dict,
               label_dict,
               suffix):        
        coord = model_dict['coord']
        energy = model_dict['energy']
        atom_ener = model_dict['atom_ener']
        nframes = tf.shape(atom_ener)[0]
        natoms = tf.shape(atom_ener)[1]
        # build energy dipole
        atom_ener0 = atom_ener - tf.reshape(tf.tile(tf.reshape(energy/global_cvt_2_ener_float(natoms), [-1, 1]), [1, natoms]), [nframes, natoms])
        coord = tf.reshape(coord, [nframes, natoms, 3])
        atom_ener0 = tf.reshape(atom_ener0, [nframes, 1, natoms])
        ener_dipole = tf.matmul(atom_ener0, coord)
        ener_dipole = tf.reshape(ener_dipole, [nframes, 3])
        
        energy_hat = label_dict['energy']
        ener_dipole_hat = label_dict['energy_dipole']
        find_energy = label_dict['find_energy']
        find_ener_dipole = label_dict['find_energy_dipole']                

        l2_ener_loss = tf.reduce_mean( tf.square(energy - energy_hat), name='l2_'+suffix)

        ener_dipole_reshape = tf.reshape(ener_dipole, [-1])
        ener_dipole_hat_reshape = tf.reshape(ener_dipole_hat, [-1])
        l2_ener_dipole_loss = tf.reduce_mean( tf.square(ener_dipole_reshape - ener_dipole_hat_reshape), name='l2_'+suffix)

        # atom_norm_ener  = 1./ global_cvt_2_ener_float(natoms[0]) 
        atom_norm_ener  = 1./ global_cvt_2_ener_float(natoms) 
        pref_e  = global_cvt_2_ener_float(find_energy * (self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * learning_rate / self.starter_learning_rate) )
        pref_ed = global_cvt_2_tf_float(find_ener_dipole * (self.limit_pref_ed + (self.start_pref_ed - self.limit_pref_ed) * learning_rate / self.starter_learning_rate) )

        l2_loss = 0
        more_loss = {}
        l2_loss += atom_norm_ener * (pref_e * l2_ener_loss)
        l2_loss += global_cvt_2_ener_float(pref_ed * l2_ener_dipole_loss)
        more_loss['l2_ener_loss'] = l2_ener_loss
        more_loss['l2_ener_dipole_loss'] = l2_ener_dipole_loss

        self.l2_loss_summary = tf.summary.scalar('l2_loss', tf.sqrt(l2_loss))
        self.l2_loss_ener_summary = tf.summary.scalar('l2_ener_loss', tf.sqrt(l2_ener_loss) / global_cvt_2_tf_float(natoms[0]))
        self.l2_ener_dipole_loss_summary = tf.summary.scalar('l2_ener_dipole_loss', tf.sqrt(l2_ener_dipole_loss))

        self.l2_l = l2_loss
        self.l2_more = more_loss
        return l2_loss, more_loss

    def eval(self, sess, feed_dict, natoms):
        run_data = [
            self.l2_l,
            self.l2_more['l2_ener_loss'],
            self.l2_more['l2_ener_dipole_loss']
        ]
        error, error_e, error_ed = run_sess(sess, run_data, feed_dict=feed_dict)
        results = {
            'natoms': natoms[0],
            'rmse': np.sqrt(error),
            'rmse_e': np.sqrt(error_e) / natoms[0],
            'rmse_ed': np.sqrt(error_ed)
        }
        return results

    @staticmethod
    def print_header() :  # depreciated
        prop_fmt = '   %9s %9s'
        print_str = ''
        print_str += prop_fmt % ('l2_tst', 'l2_trn')
        print_str += prop_fmt % ('l2_e_tst', 'l2_e_trn')
        print_str += prop_fmt % ('l2_ed_tst', 'l2_ed_trn')
        return print_str 

    def print_on_training(self,
                          tb_writer,
                          cur_batch, 
                          sess, 
                          natoms,
                          feed_dict_test,
                          feed_dict_batch):  # depreciated

        run_data = [
            self.l2_l,
            self.l2_more['l2_ener_loss'],
            self.l2_more['l2_ener_dipole_loss']
        ]

        # first train data
        train_out = run_sess(sess, run_data, feed_dict=feed_dict_batch)
        error_train, error_e_train, error_ed_train = train_out

        # than test data, if tensorboard log writter is present, commpute summary
        # and write tensorboard logs
        if tb_writer:
            summary_merged_op = tf.summary.merge([
                self.l2_loss_summary,
                self.l2_loss_ener_summary,
                self.l2_ener_dipole_loss_summary
            ])
            run_data.insert(0, summary_merged_op)

        test_out = run_sess(sess, run_data, feed_dict=feed_dict_test)

        if tb_writer:
            summary = test_out.pop(0)
            tb_writer.add_summary(summary, cur_batch)

        error_test, error_e_test, error_ed_test = test_out

        print_str = ""
        prop_fmt = "   %9.2e %9.2e"
        print_str += prop_fmt % (np.sqrt(error_test), np.sqrt(error_train))
        print_str += prop_fmt % (np.sqrt(error_e_test) / natoms[0], np.sqrt(error_e_train) / natoms[0])
        print_str += prop_fmt % (np.sqrt(error_ed_test), np.sqrt(error_ed_train))
        return print_str