deep_pot.py 17.7 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import logging
from typing import TYPE_CHECKING, List, Optional, Tuple, Union, Callable

import numpy as np
from deepmd.common import make_default_mesh
from deepmd.env import default_tf_session_config, tf
from deepmd.infer.data_modifier import DipoleChargeModifier
from deepmd.infer.deep_eval import DeepEval
from deepmd.utils.sess import run_sess
from deepmd.utils.batch_size import AutoBatchSize

if TYPE_CHECKING:
    from pathlib import Path

log = logging.getLogger(__name__)


class DeepPot(DeepEval):
    """Constructor.

    Parameters
    ----------
    model_file : Path
        The name of the frozen model file.
    load_prefix: str
        The prefix in the load computational graph
    default_tf_graph : bool
        If uses the default tf graph, otherwise build a new tf graph for evaluation
    auto_batch_size : bool or int or AutomaticBatchSize, default: True
        If True, automatic batch size will be used. If int, it will be used
        as the initial batch size.

    Examples
    --------
    >>> from deepmd.infer import DeepPot
    >>> import numpy as np
    >>> dp = DeepPot('graph.pb')
    >>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
    >>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])
    >>> atype = [1,0,1]
    >>> e, f, v = dp.eval(coord, cell, atype)
    
    where `e`, `f` and `v` are predicted energy, force and virial of the system, respectively.

    Warnings
    --------
    For developers: `DeepTensor` initializer must be called at the end after
    `self.tensors` are modified because it uses the data in `self.tensors` dict.
    Do not chanage the order!
    """

    def __init__(
        self,
        model_file: "Path",
        load_prefix: str = "load",
        default_tf_graph: bool = False,
        auto_batch_size: Union[bool, int, AutoBatchSize] = True,
    ) -> None:

        # add these tensors on top of what is defined by DeepTensor Class
        # use this in favor of dict update to move attribute from class to
        # instance namespace
        self.tensors = dict(
            {
                # descrpt attrs
                "t_ntypes": "descrpt_attr/ntypes:0",
                "t_rcut": "descrpt_attr/rcut:0",
                # fitting attrs
                "t_dfparam": "fitting_attr/dfparam:0",
                "t_daparam": "fitting_attr/daparam:0",
                # model attrs
                "t_tmap": "model_attr/tmap:0",
                # inputs
                "t_coord": "t_coord:0",
                "t_type": "t_type:0",
                "t_natoms": "t_natoms:0",
                "t_box": "t_box:0",
                "t_mesh": "t_mesh:0",
                # add output tensors
                "t_energy": "o_energy:0",
                "t_force": "o_force:0",
                "t_virial": "o_virial:0",
                "t_ae": "o_atom_energy:0",
                "t_av": "o_atom_virial:0",
                "t_descriptor": "o_descriptor:0",
            },
        )
        DeepEval.__init__(
            self,
            model_file,
            load_prefix=load_prefix,
            default_tf_graph=default_tf_graph,
            auto_batch_size=auto_batch_size,
        )

        # load optional tensors
        operations = [op.name for op in self.graph.get_operations()]
        # check if the graph has these operations:
        # if yes add them
        if 't_efield' in operations:
            self._get_tensor("t_efield:0", "t_efield")
            self.has_efield = True
        else:
            log.debug(f"Could not get tensor 't_efield:0'")
            self.t_efield = None
            self.has_efield = False

        if 'load/t_fparam' in operations:
            self.tensors.update({"t_fparam": "t_fparam:0"})
            self.has_fparam = True
        else:
            log.debug(f"Could not get tensor 't_fparam:0'")
            self.t_fparam = None
            self.has_fparam = False

        if 'load/t_aparam' in operations:
            self.tensors.update({"t_aparam": "t_aparam:0"})
            self.has_aparam = True
        else:
            log.debug(f"Could not get tensor 't_aparam:0'")
            self.t_aparam = None
            self.has_aparam = False

        # now load tensors to object attributes
        for attr_name, tensor_name in self.tensors.items():
            self._get_tensor(tensor_name, attr_name)

        self._run_default_sess()
        self.tmap = self.tmap.decode('UTF-8').split()        

        # setup modifier
        try:
            t_modifier_type = self._get_tensor("modifier_attr/type:0")
            self.modifier_type = run_sess(self.sess, t_modifier_type).decode("UTF-8")
        except (ValueError, KeyError):
            self.modifier_type = None

        if self.modifier_type == "dipole_charge":
            t_mdl_name = self._get_tensor("modifier_attr/mdl_name:0")
            t_mdl_charge_map = self._get_tensor("modifier_attr/mdl_charge_map:0")
            t_sys_charge_map = self._get_tensor("modifier_attr/sys_charge_map:0")
            t_ewald_h = self._get_tensor("modifier_attr/ewald_h:0")
            t_ewald_beta = self._get_tensor("modifier_attr/ewald_beta:0")
            [mdl_name, mdl_charge_map, sys_charge_map, ewald_h, ewald_beta] = run_sess(self.sess, [t_mdl_name, t_mdl_charge_map, t_sys_charge_map, t_ewald_h, t_ewald_beta])
            mdl_name = mdl_name.decode("UTF-8")
            mdl_charge_map = [int(ii) for ii in mdl_charge_map.decode("UTF-8").split()]
            sys_charge_map = [int(ii) for ii in sys_charge_map.decode("UTF-8").split()]
            self.dm = DipoleChargeModifier(mdl_name, mdl_charge_map, sys_charge_map, ewald_h = ewald_h, ewald_beta = ewald_beta)

    def _run_default_sess(self):
        [self.ntypes, self.rcut, self.dfparam, self.daparam, self.tmap] = run_sess(self.sess, 
            [self.t_ntypes, self.t_rcut, self.t_dfparam, self.t_daparam, self.t_tmap]
        )

    def get_ntypes(self) -> int:
        """Get the number of atom types of this model."""
        return self.ntypes

    def get_rcut(self) -> float:
        """Get the cut-off radius of this model."""
        return self.rcut

    def get_type_map(self) -> List[int]:
        """Get the type map (element name of the atom types) of this model."""
        return self.tmap

    def get_sel_type(self) -> List[int]:
        """Unsupported in this model."""
        raise NotImplementedError("This model type does not support this attribute")
    def get_dim_fparam(self) -> int:
        """Get the number (dimension) of frame parameters of this DP."""
        return self.dfparam

    def get_dim_aparam(self) -> int:
        """Get the number (dimension) of atomic parameters of this DP."""
        return self.daparam
    
    def _eval_func(self, inner_func: Callable, numb_test: int, natoms: int) -> Callable:
        """Wrapper method with auto batch size.
        
        Parameters
        ----------
        inner_func : Callable
            the method to be wrapped
        numb_test: int
            number of tests
        natoms : int
            number of atoms
        
        Returns
        -------
        Callable
            the wrapper
        """
        if self.auto_batch_size is not None:
            def eval_func(*args, **kwargs):
                return self.auto_batch_size.execute_all(inner_func, numb_test, natoms, *args, **kwargs)
        else:
            eval_func = inner_func
        return eval_func

    def _get_natoms_and_nframes(self, coords: np.ndarray, atom_types: List[int]) -> Tuple[int, int]:
        natoms = len(atom_types)
        coords = np.reshape(np.array(coords), [-1, natoms * 3])
        nframes = coords.shape[0]
        return natoms, nframes

    def eval(
        self,
        coords: np.ndarray,
        cells: np.ndarray,
        atom_types: List[int],
        atomic: bool = False,
        fparam: Optional[np.ndarray] = None,
        aparam: Optional[np.ndarray] = None,
        efield: Optional[np.ndarray] = None,
    ) -> Tuple[np.ndarray, ...]:
        """Evaluate the energy, force and virial by using this DP.

        Parameters
        ----------
        coords
            The coordinates of atoms.
            The array should be of size nframes x natoms x 3
        cells
            The cell of the region.
            If None then non-PBC is assumed, otherwise using PBC.
            The array should be of size nframes x 9
        atom_types
            The atom types
            The list should contain natoms ints
        atomic
            Calculate the atomic energy and virial
        fparam
            The frame parameter.
            The array can be of size :
            - nframes x dim_fparam.
            - dim_fparam. Then all frames are assumed to be provided with the same fparam.
        aparam
            The atomic parameter
            The array can be of size :
            - nframes x natoms x dim_aparam.
            - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.
            - dim_aparam. Then all frames and atoms are provided with the same aparam.
        efield
            The external field on atoms.
            The array should be of size nframes x natoms x 3

        Returns
        -------
        energy
            The system energy.
        force
            The force on each atom
        virial
            The virial
        atom_energy
            The atomic energy. Only returned when atomic == True
        atom_virial
            The atomic virial. Only returned when atomic == True
        """
        # reshape coords before getting shape
        natoms, numb_test = self._get_natoms_and_nframes(coords, atom_types)
        output = self._eval_func(self._eval_inner, numb_test, natoms)(coords, cells, atom_types, fparam = fparam, aparam = aparam, atomic = atomic, efield = efield)

        if self.modifier_type is not None:
            if atomic:
                raise RuntimeError('modifier does not support atomic modification')
            me, mf, mv = self.dm.eval(coords, cells, atom_types)
            output = list(output) # tuple to list
            e, f, v = output[:3]
            output[0] += me.reshape(e.shape)
            output[1] += mf.reshape(f.shape)
            output[2] += mv.reshape(v.shape)
            output = tuple(output)
        return output

    def _prepare_feed_dict(
        self,
        coords,
        cells,
        atom_types,
        fparam=None,
        aparam=None,
        atomic=False,
        efield=None
    ):
        # standarize the shape of inputs
        natoms, nframes = self._get_natoms_and_nframes(coords, atom_types)
        atom_types = np.array(atom_types, dtype = int).reshape([-1])
        coords = np.reshape(np.array(coords), [-1, natoms * 3])
        if cells is None:
            pbc = False
            # make cells to work around the requirement of pbc
            cells = np.tile(np.eye(3), [nframes, 1]).reshape([nframes, 9])
        else:
            pbc = True
            cells = np.array(cells).reshape([nframes, 9])
        
        if self.has_fparam :
            assert(fparam is not None)
            fparam = np.array(fparam)
        if self.has_aparam :
            assert(aparam is not None)
            aparam = np.array(aparam)
        if self.has_efield :
            assert(efield is not None), "you are using a model with external field, parameter efield should be provided"
            efield = np.array(efield)

        # reshape the inputs 
        if self.has_fparam :
            fdim = self.get_dim_fparam()
            if fparam.size == nframes * fdim :
                fparam = np.reshape(fparam, [nframes, fdim])
            elif fparam.size == fdim :
                fparam = np.tile(fparam.reshape([-1]), [nframes, 1])
            else :
                raise RuntimeError('got wrong size of frame param, should be either %d x %d or %d' % (nframes, fdim, fdim))
        if self.has_aparam :
            fdim = self.get_dim_aparam()
            if aparam.size == nframes * natoms * fdim:
                aparam = np.reshape(aparam, [nframes, natoms * fdim])
            elif aparam.size == natoms * fdim :
                aparam = np.tile(aparam.reshape([-1]), [nframes, 1])
            elif aparam.size == fdim :
                aparam = np.tile(aparam.reshape([-1]), [nframes, natoms])
            else :
                raise RuntimeError('got wrong size of frame param, should be either %d x %d x %d or %d x %d or %d' % (nframes, natoms, fdim, natoms, fdim, fdim))

        # sort inputs
        coords, atom_types, imap = self.sort_input(coords, atom_types)
        if self.has_efield:
            efield = np.reshape(efield, [nframes, natoms, 3])
            efield = efield[:,imap,:]
            efield = np.reshape(efield, [nframes, natoms*3])            

        # make natoms_vec and default_mesh
        natoms_vec = self.make_natoms_vec(atom_types)
        assert(natoms_vec[0] == natoms)

        # evaluate
        feed_dict_test = {}
        feed_dict_test[self.t_natoms] = natoms_vec
        feed_dict_test[self.t_type  ] = np.tile(atom_types, [nframes, 1]).reshape([-1])
        feed_dict_test[self.t_coord] = np.reshape(coords, [-1])
        feed_dict_test[self.t_box  ] = np.reshape(cells , [-1])
        if self.has_efield:
            feed_dict_test[self.t_efield]= np.reshape(efield, [-1])
        if pbc:
            feed_dict_test[self.t_mesh ] = make_default_mesh(cells)
        else:
            feed_dict_test[self.t_mesh ] = np.array([], dtype = np.int32)
        if self.has_fparam:
            feed_dict_test[self.t_fparam] = np.reshape(fparam, [-1])
        if self.has_aparam:
            feed_dict_test[self.t_aparam] = np.reshape(aparam, [-1])
        return feed_dict_test, imap

    def _eval_inner(
        self,
        coords,
        cells,
        atom_types,
        fparam=None,
        aparam=None,
        atomic=False,
        efield=None
    ):
        natoms, nframes = self._get_natoms_and_nframes(coords, atom_types)
        feed_dict_test, imap = self._prepare_feed_dict(coords, cells, atom_types, fparam, aparam, efield)
        t_out = [self.t_energy, 
                 self.t_force, 
                 self.t_virial]
        if atomic :
            t_out += [self.t_ae, 
                      self.t_av]

        v_out = run_sess(self.sess, t_out, feed_dict = feed_dict_test)
        energy = v_out[0]
        force = v_out[1]
        virial = v_out[2]
        if atomic:
            ae = v_out[3]
            av = v_out[4]

        # reverse map of the outputs
        force  = self.reverse_map(np.reshape(force, [nframes,-1,3]), imap)
        if atomic :
            ae  = self.reverse_map(np.reshape(ae, [nframes,-1,1]), imap)
            av  = self.reverse_map(np.reshape(av, [nframes,-1,9]), imap)

        energy = np.reshape(energy, [nframes, 1])
        force = np.reshape(force, [nframes, natoms, 3])
        virial = np.reshape(virial, [nframes, 9])
        if atomic:
            ae = np.reshape(ae, [nframes, natoms, 1])
            av = np.reshape(av, [nframes, natoms, 9])
            return energy, force, virial, ae, av
        else :
            return energy, force, virial

    def eval_descriptor(self,
            coords: np.ndarray,
            cells: np.ndarray,
            atom_types: List[int],
            fparam: Optional[np.ndarray] = None,
            aparam: Optional[np.ndarray] = None,
            efield: Optional[np.ndarray] = None,
            ) -> np.array:
        """Evaluate descriptors by using this DP.

        Parameters
        ----------
        coords
            The coordinates of atoms.
            The array should be of size nframes x natoms x 3
        cells
            The cell of the region.
            If None then non-PBC is assumed, otherwise using PBC.
            The array should be of size nframes x 9
        atom_types
            The atom types
            The list should contain natoms ints
        fparam
            The frame parameter.
            The array can be of size :
            - nframes x dim_fparam.
            - dim_fparam. Then all frames are assumed to be provided with the same fparam.
        aparam
            The atomic parameter
            The array can be of size :
            - nframes x natoms x dim_aparam.
            - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.
            - dim_aparam. Then all frames and atoms are provided with the same aparam.
        efield
            The external field on atoms.
            The array should be of size nframes x natoms x 3

        Returns
        -------
        descriptor
            Descriptors.
        """
        natoms, numb_test = self._get_natoms_and_nframes(coords, atom_types)
        descriptor = self._eval_func(self._eval_descriptor_inner, numb_test, natoms)(coords, cells, atom_types, fparam = fparam, aparam = aparam, efield = efield)
        return descriptor
    
    def _eval_descriptor_inner(self,
            coords: np.ndarray,
            cells: np.ndarray,
            atom_types: List[int],
            fparam: Optional[np.ndarray] = None,
            aparam: Optional[np.ndarray] = None,
            efield: Optional[np.ndarray] = None,
            ) -> np.array:
        natoms, nframes = self._get_natoms_and_nframes(coords, atom_types)
        feed_dict_test, imap = self._prepare_feed_dict(coords, cells, atom_types, fparam, aparam, efield)
        descriptor, = run_sess(self.sess, [self.t_descriptor], feed_dict = feed_dict_test)
        return self.reverse_map(np.reshape(descriptor, [nframes, natoms, -1]), imap)