polar.py 25.3 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import warnings
import numpy as np
from typing import Tuple, List

from deepmd.env import tf
from deepmd.common import add_data_requirement, cast_precision, get_activation_func, get_precision
from deepmd.utils.network import one_layer, one_layer_rand_seed_shift
from deepmd.utils.graph import get_fitting_net_variables_from_graph_def
from deepmd.descriptor import DescrptLocFrame
from deepmd.descriptor import DescrptSeA
from deepmd.fit.fitting import Fitting

from deepmd.env import global_cvt_2_tf_float
from deepmd.env import GLOBAL_TF_FLOAT_PRECISION


class PolarFittingLocFrame () :
    """
    Fitting polarizability with local frame descriptor.

    .. deprecated:: 2.0.0
        This class is not supported any more.
    """
    def __init__ (self, jdata, descrpt) :
        if not isinstance(descrpt, DescrptLocFrame) :
            raise RuntimeError('PolarFittingLocFrame only supports DescrptLocFrame')
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        args = ClassArg()\
               .add('neuron',           list, default = [120,120,120], alias = 'n_neuron')\
               .add('resnet_dt',        bool, default = True)\
               .add('sel_type',         [list,int], default = [ii for ii in range(self.ntypes)], alias = 'pol_type')\
               .add('seed',             int)\
               .add("activation_function", str, default = "tanh")\
               .add('precision',           str,    default = "default")    
        class_data = args.parse(jdata)
        self.n_neuron = class_data['neuron']
        self.resnet_dt = class_data['resnet_dt']
        self.sel_type = class_data['sel_type']
        self.seed = class_data['seed']
        self.fitting_activation_fn = get_activation_func(class_data["activation_function"])
        self.fitting_precision = get_precision(class_data['precision'])
        self.useBN = False

    def get_sel_type(self):
        return self.sel_type

    def get_out_size(self):
        return 9

    def build (self, 
               input_d,
               rot_mat,
               natoms,
               reuse = None,
               suffix = '') :
        start_index = 0
        inputs = tf.cast(tf.reshape(input_d, [-1, natoms[0], self.dim_descrpt]), self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, 9 * natoms[0]])

        count = 0
        outs_list = []
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index, 0],
                                 [-1, natoms[2+type_i], -1] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index*      9],
                                  [-1, natoms[2+type_i]* 9] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, 3, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision)
            # (nframes x natoms) x 9
            final_layer = one_layer(layer, 9, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, precision = self.fitting_precision, final_layer = True)
            # (nframes x natoms) x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], 3, 3])
            # (nframes x natoms) x 3 x 3
            final_layer = final_layer + tf.transpose(final_layer, perm = [0,2,1])
            # (nframes x natoms) x 3 x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a = True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], 3, 3])

            # concat the results
            outs_list.append(final_layer)
            count += 1
        outs = tf.concat(outs_list, axis = 1)

        tf.summary.histogram('fitting_net_output', outs)
        return tf.cast(tf.reshape(outs, [-1]),  GLOBAL_TF_FLOAT_PRECISION)


class PolarFittingSeA (Fitting) :
    """
    Fit the atomic polarizability with descriptor se_a

    Parameters
    ----------
    descrpt : tf.Tensor
            The descrptor
    neuron : List[int]
            Number of neurons in each hidden layer of the fitting net
    resnet_dt : bool
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    sel_type : List[int]
            The atom types selected to have an atomic polarizability prediction. If is None, all atoms are selected.
    fit_diag : bool
            Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.
    scale : List[float]
            The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]
    diag_shift : List[float]
            The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.        
    seed : int
            Random seed for initializing the network parameters.
    activation_function : str
            The activation function in the embedding net. Supported options are |ACTIVATION_FN|
    precision : str
            The precision of the embedding net parameters. Supported options are |PRECISION|
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    """
    def __init__ (self, 
                  descrpt : tf.Tensor,
                  neuron : List[int] = [120,120,120],
                  resnet_dt : bool = True,
                  sel_type : List[int] = None,
                  fit_diag : bool = True,
                  scale : List[float] = None,
                  shift_diag : bool = True,     # YWolfeee: will support the user to decide whether to use this function
                  #diag_shift : List[float] = None, YWolfeee: will not support the user to assign a shift
                  seed : int = None,
                  activation_function : str = 'tanh',
                  precision : str = 'default',
                  uniform_seed: bool = False                  
    ) -> None:
        """
        Constructor
        """
        if not isinstance(descrpt, DescrptSeA) :
            raise RuntimeError('PolarFittingSeA only supports DescrptSeA')
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        # args = ClassArg()\
        #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
        #        .add('resnet_dt',        bool,   default = True)\
        #        .add('fit_diag',         bool,   default = True)\
        #        .add('diag_shift',       [list,float], default = [0.0 for ii in range(self.ntypes)])\
        #        .add('scale',            [list,float], default = [1.0 for ii in range(self.ntypes)])\
        #        .add('sel_type',         [list,int],   default = [ii for ii in range(self.ntypes)], alias = 'pol_type')\
        #        .add('seed',             int)\
        #        .add("activation_function", str ,   default = "tanh")\
        #        .add('precision',           str,    default = "default")
        # class_data = args.parse(jdata)
        self.n_neuron = neuron
        self.resnet_dt = resnet_dt
        self.sel_type = sel_type
        self.fit_diag = fit_diag
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = one_layer_rand_seed_shift()
        #self.diag_shift = diag_shift
        self.shift_diag = shift_diag
        self.scale = scale
        self.fitting_activation_fn = get_activation_func(activation_function)
        self.fitting_precision = get_precision(precision)
        if self.sel_type is None:
            self.sel_type = [ii for ii in range(self.ntypes)]
        if self.scale is None:
            self.scale = [1.0 for ii in range(self.ntypes)]
        #if self.diag_shift is None:
        #    self.diag_shift = [0.0 for ii in range(self.ntypes)]
        if type(self.sel_type) is not list:
            self.sel_type = [self.sel_type]
        self.constant_matrix = np.zeros(len(self.sel_type)) # len(sel_type) x 1, store the average diagonal value
        #if type(self.diag_shift) is not list:
        #    self.diag_shift = [self.diag_shift]
        if type(self.scale) is not list:
            self.scale = [self.scale]
        self.dim_rot_mat_1 = descrpt.get_dim_rot_mat_1()
        self.dim_rot_mat = self.dim_rot_mat_1 * 3
        self.useBN = False
        self.fitting_net_variables = None
        self.mixed_prec = None

    def get_sel_type(self) -> List[int]:
        """
        Get selected atom types
        """
        return self.sel_type

    def get_out_size(self) -> int:
        """
        Get the output size. Should be 9
        """
        return 9

    def compute_input_stats(self, 
                            all_stat, 
                            protection = 1e-2):
        """
        Compute the input statistics

        Parameters
        ----------
        all_stat
                Dictionary of inputs. 
                can be prepared by model.make_stat_input
        protection
                Divided-by-zero protection
        """
        if not ('polarizability' in all_stat.keys()):
            self.avgeig = np.zeros([9])
            warnings.warn('no polarizability data, cannot do data stat. use zeros as guess')
            return
        data = all_stat['polarizability']
        all_tmp = []
        for ss in range(len(data)):
            tmp = np.concatenate(data[ss], axis = 0)
            tmp = np.reshape(tmp, [-1, 3, 3])
            tmp,_ = np.linalg.eig(tmp)
            tmp = np.absolute(tmp)
            tmp = np.sort(tmp, axis = 1)
            all_tmp.append(tmp)
        all_tmp = np.concatenate(all_tmp, axis = 1)
        self.avgeig = np.average(all_tmp, axis = 0)

        # YWolfeee: support polar normalization, initialize to a more appropriate point 
        if self.shift_diag:
            mean_polar = np.zeros([len(self.sel_type), 9])
            sys_matrix, polar_bias = [], []
            for ss in range(len(all_stat['type'])):
                atom_has_polar = [w for w in all_stat['type'][ss][0] if (w in self.sel_type)]   # select atom with polar
                if all_stat['find_atomic_polarizability'][ss] > 0.0:
                    for itype in range(len(self.sel_type)): # Atomic polar mode, should specify the atoms
                        index_lis = [index for index, w in enumerate(atom_has_polar) \
                                        if atom_has_polar[index] == self.sel_type[itype]]   # select index in this type

                        sys_matrix.append(np.zeros((1,len(self.sel_type))))
                        sys_matrix[-1][0,itype] = len(index_lis)

                        polar_bias.append(np.sum(
                            all_stat['atomic_polarizability'][ss].reshape((-1,9))[index_lis],axis=0).reshape((1,9)))
                else:   # No atomic polar in this system, so it should have global polar
                    if not all_stat['find_polarizability'][ss] > 0.0: # This system is jsut a joke?
                        continue
                    # Till here, we have global polar
                    sys_matrix.append(np.zeros((1,len(self.sel_type)))) # add a line in the equations
                    for itype in range(len(self.sel_type)): # Atomic polar mode, should specify the atoms
                        index_lis = [index for index, w in enumerate(atom_has_polar) \
                                        if atom_has_polar[index] == self.sel_type[itype]]   # select index in this type

                        sys_matrix[-1][0,itype] = len(index_lis)
                    
                    # add polar_bias
                    polar_bias.append(all_stat['polarizability'][ss].reshape((1,9)))

            matrix, bias = np.concatenate(sys_matrix,axis=0), np.concatenate(polar_bias,axis=0)
            atom_polar,_,_,_ \
                = np.linalg.lstsq(matrix, bias, rcond = 1e-3)
            for itype in range(len(self.sel_type)):
                self.constant_matrix[itype] = np.mean(np.diagonal(atom_polar[itype].reshape((3,3))))

    @cast_precision
    def build (self, 
               input_d : tf.Tensor,
               rot_mat : tf.Tensor,
               natoms : tf.Tensor,
               reuse : bool = None,
               suffix : str = '') :
        """
        Build the computational graph for fitting net
        
        Parameters
        ----------
        input_d
                The input descriptor
        rot_mat
                The rotation matrix from the descriptor.
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        atomic_polar
                The atomic polarizability        
        """
        start_index = 0
        inputs = tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]])
        rot_mat = tf.reshape(rot_mat, [-1, self.dim_rot_mat * natoms[0]])

        count = 0
        outs_list = []
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index*      self.dim_descrpt],
                                 [-1, natoms[2+type_i]* self.dim_descrpt] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index*      self.dim_rot_mat],
                                  [-1, natoms[2+type_i]* self.dim_rot_mat] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            if self.fit_diag :
                bavg = np.zeros(self.dim_rot_mat_1)
                # bavg[0] = self.avgeig[0]
                # bavg[1] = self.avgeig[1]
                # bavg[2] = self.avgeig[2]
                # (nframes x natoms) x naxis
                final_layer = one_layer(layer, self.dim_rot_mat_1, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, bavg = bavg, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec, final_layer = True)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
                # (nframes x natoms) x naxis
                final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], self.dim_rot_mat_1])
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.matrix_diag(final_layer)                
            else :
                bavg = np.zeros(self.dim_rot_mat_1*self.dim_rot_mat_1)
                # bavg[0*self.dim_rot_mat_1+0] = self.avgeig[0]
                # bavg[1*self.dim_rot_mat_1+1] = self.avgeig[1]
                # bavg[2*self.dim_rot_mat_1+2] = self.avgeig[2]
                # (nframes x natoms) x (naxis x naxis)
                final_layer = one_layer(layer, self.dim_rot_mat_1*self.dim_rot_mat_1, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, bavg = bavg, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec, final_layer = True)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], self.dim_rot_mat_1, self.dim_rot_mat_1])
                # (nframes x natoms) x naxis x naxis
                final_layer = final_layer + tf.transpose(final_layer, perm = [0,2,1])
            # (nframes x natoms) x naxis x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a = True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], 3, 3])
            # shift and scale
            sel_type_idx = self.sel_type.index(type_i)
            final_layer = final_layer * self.scale[sel_type_idx]
            final_layer = final_layer + self.constant_matrix[sel_type_idx] * tf.eye(3, batch_shape=[tf.shape(inputs)[0], natoms[2+type_i]], dtype = GLOBAL_TF_FLOAT_PRECISION)

            # concat the results
            outs_list.append(final_layer)
            count += 1
        outs = tf.concat(outs_list, axis = 1)
        
        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])

    def init_variables(self,
                       graph: tf.Graph,
                       graph_def: tf.GraphDef,
                       suffix : str = "",
    ) -> None:
        """
        Init the fitting net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str
            suffix to name scope
        """
        self.fitting_net_variables = get_fitting_net_variables_from_graph_def(graph_def, suffix=suffix)


    def enable_mixed_precision(self, mixed_prec : dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.mixed_prec = mixed_prec
        self.fitting_precision = get_precision(mixed_prec['output_prec'])


class GlobalPolarFittingSeA () :
    """
    Fit the system polarizability with descriptor se_a

    Parameters
    ----------
    descrpt : tf.Tensor
            The descrptor
    neuron : List[int]
            Number of neurons in each hidden layer of the fitting net
    resnet_dt : bool
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    sel_type : List[int]
            The atom types selected to have an atomic polarizability prediction
    fit_diag : bool
            Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.
    scale : List[float]
            The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]
    diag_shift : List[float]
            The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.        
    seed : int
            Random seed for initializing the network parameters.
    activation_function : str
            The activation function in the embedding net. Supported options are |ACTIVATION_FN|
    precision : str
            The precision of the embedding net parameters. Supported options are |PRECISION|
    """
    def __init__ (self, 
                  descrpt : tf.Tensor,
                  neuron : List[int] = [120,120,120],
                  resnet_dt : bool = True,
                  sel_type : List[int] = None,
                  fit_diag : bool = True,
                  scale : List[float] = None,
                  diag_shift : List[float] = None,
                  seed : int = None,
                  activation_function : str = 'tanh',
                  precision : str = 'default'
    ) -> None:
        """
        Constructor            
        """
        if not isinstance(descrpt, DescrptSeA) :
            raise RuntimeError('GlobalPolarFittingSeA only supports DescrptSeA')
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        self.polar_fitting = PolarFittingSeA(descrpt,
                                             neuron,
                                             resnet_dt,
                                             sel_type,
                                             fit_diag,
                                             scale,
                                             diag_shift,
                                             seed,
                                             activation_function,
                                             precision)

    def get_sel_type(self) -> int:
        """
        Get selected atom types
        """
        return self.polar_fitting.get_sel_type()

    def get_out_size(self) -> int:
        """
        Get the output size. Should be 9
        """
        return self.polar_fitting.get_out_size()

    def build (self,
               input_d,
               rot_mat,
               natoms,
               reuse = None,
               suffix = '') -> tf.Tensor:
        """
        Build the computational graph for fitting net
        
        Parameters
        ----------
        input_d
                The input descriptor
        rot_mat
                The rotation matrix from the descriptor.
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        polar
                The system polarizability        
        """
        inputs = tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]])
        outs = self.polar_fitting.build(input_d, rot_mat, natoms, reuse, suffix)
        # nframes x natoms x 9
        outs = tf.reshape(outs, [tf.shape(inputs)[0], -1, 9])
        outs = tf.reduce_sum(outs, axis = 1)
        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])
    
    def init_variables(self,
                       graph: tf.Graph,
                       graph_def: tf.GraphDef,
                       suffix : str = "",
    ) -> None:
        """
        Init the fitting net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str
            suffix to name scope
        """
        self.polar_fitting.init_variables(graph=graph, graph_def=graph_def, suffix=suffix)


    def enable_mixed_precision(self, mixed_prec : dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.polar_fitting.enable_mixed_precision(mixed_prec)