ener.py 27.5 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import warnings
import numpy as np
from typing import Tuple, List
from packaging.version import Version

from deepmd.env import tf
from deepmd.common import add_data_requirement, get_activation_func, get_precision, cast_precision
from deepmd.utils.network import one_layer_rand_seed_shift
from deepmd.utils.network import one_layer as one_layer_deepmd
from deepmd.utils.type_embed import embed_atom_type
from deepmd.utils.graph import get_fitting_net_variables_from_graph_def, load_graph_def, get_tensor_by_name_from_graph
from deepmd.utils.errors import GraphWithoutTensorError
from deepmd.fit.fitting import Fitting

from deepmd.env import global_cvt_2_tf_float
from deepmd.env import GLOBAL_TF_FLOAT_PRECISION, TF_VERSION

from deepmd.nvnmd.utils.config import nvnmd_cfg
from deepmd.nvnmd.fit.ener import one_layer_nvnmd

class EnerFitting (Fitting):
    r"""Fitting the energy of the system. The force and the virial can also be trained.

    The potential energy :math:`E` is a fitting network function of the descriptor :math:`\mathcal{D}`:

    .. math::
        E(\mathcal{D}) = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)}
        \circ \cdots \circ \mathcal{L}^{(1)} \circ \mathcal{L}^{(0)}

    The first :math:`n` hidden layers :math:`\mathcal{L}^{(0)}, \cdots, \mathcal{L}^{(n-1)}` are given by

    .. math::
        \mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})=
            \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b})

    where :math:`\mathbf{x} \in \mathbb{R}^{N_1}`$` is the input vector and :math:`\mathbf{y} \in \mathbb{R}^{N_2}`
    is the output vector. :math:`\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}` and
    :math:`\mathbf{b} \in \mathbb{R}^{N_2}`$` are weights and biases, respectively,
    both of which are trainable if `trainable[i]` is `True`. :math:`\boldsymbol{\phi}`
    is the activation function.

    The output layer :math:`\mathcal{L}^{(n)}` is given by

    .. math::
        \mathbf{y}=\mathcal{L}^{(n)}(\mathbf{x};\mathbf{w},\mathbf{b})=
            \mathbf{x}^T\mathbf{w}+\mathbf{b}

    where :math:`\mathbf{x} \in \mathbb{R}^{N_{n-1}}`$` is the input vector and :math:`\mathbf{y} \in \mathbb{R}`
    is the output scalar. :math:`\mathbf{w} \in \mathbb{R}^{N_{n-1}}` and
    :math:`\mathbf{b} \in \mathbb{R}`$` are weights and bias, respectively,
    both of which are trainable if `trainable[n]` is `True`.

    Parameters
    ----------
    descrpt
            The descrptor :math:`\mathcal{D}`
    neuron
            Number of neurons :math:`N` in each hidden layer of the fitting net
    resnet_dt
            Time-step `dt` in the resnet construction:
            :math:`y = x + dt * \phi (Wx + b)`
    numb_fparam
            Number of frame parameter
    numb_aparam
            Number of atomic parameter
    rcond
            The condition number for the regression of atomic energy.
    tot_ener_zero
            Force the total energy to zero. Useful for the charge fitting.
    trainable
            If the weights of fitting net are trainable. 
            Suppose that we have :math:`N_l` hidden layers in the fitting net, 
            this list is of length :math:`N_l + 1`, specifying if the hidden layers and the output layer are trainable.
    seed
            Random seed for initializing the network parameters.
    atom_ener
            Specifying atomic energy contribution in vacuum. The `set_davg_zero` key in the descrptor should be set.
    activation_function
            The activation function :math:`\boldsymbol{\phi}` in the embedding net. Supported options are |ACTIVATION_FN|
    precision
            The precision of the embedding net parameters. Supported options are |PRECISION|
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    """
    def __init__ (self, 
                  descrpt : tf.Tensor,
                  neuron : List[int] = [120,120,120],
                  resnet_dt : bool = True,
                  numb_fparam : int = 0,
                  numb_aparam : int = 0,
                  rcond : float = 1e-3,
                  tot_ener_zero : bool = False,
                  trainable : List[bool] = None,
                  seed : int = None,
                  atom_ener : List[float] = [],
                  activation_function : str = 'tanh',
                  precision : str = 'default',
                  uniform_seed: bool = False
    ) -> None:
        """
        Constructor
        """
        # model param
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        # args = ()\
        #        .add('numb_fparam',      int,    default = 0)\
        #        .add('numb_aparam',      int,    default = 0)\
        #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
        #        .add('resnet_dt',        bool,   default = True)\
        #        .add('rcond',            float,  default = 1e-3) \
        #        .add('tot_ener_zero',    bool,   default = False) \
        #        .add('seed',             int)               \
        #        .add('atom_ener',        list,   default = [])\
        #        .add("activation_function", str,    default = "tanh")\
        #        .add("precision",           str, default = "default")\
        #        .add("trainable",        [list, bool], default = True)
        self.numb_fparam = numb_fparam
        self.numb_aparam = numb_aparam
        self.n_neuron = neuron
        self.resnet_dt = resnet_dt
        self.rcond = rcond
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = one_layer_rand_seed_shift()
        self.tot_ener_zero = tot_ener_zero
        self.fitting_activation_fn = get_activation_func(activation_function)
        self.fitting_precision = get_precision(precision)
        self.trainable = trainable
        if self.trainable is None:
            self.trainable = [True for ii in range(len(self.n_neuron) + 1)]
        if type(self.trainable) is bool:
            self.trainable = [self.trainable] * (len(self.n_neuron)+1)
        assert(len(self.trainable) == len(self.n_neuron) + 1), 'length of trainable should be that of n_neuron + 1'
        self.atom_ener = []
        self.atom_ener_v = atom_ener
        for at, ae in enumerate(atom_ener):
            if ae is not None:
                self.atom_ener.append(tf.constant(ae, self.fitting_precision, name = "atom_%d_ener" % at))
            else:
                self.atom_ener.append(None)
        self.useBN = False
        self.bias_atom_e = np.zeros(self.ntypes, dtype=np.float64)
        # data requirement
        if self.numb_fparam > 0 :
            add_data_requirement('fparam', self.numb_fparam, atomic=False, must=True, high_prec=False)
            self.fparam_avg = None
            self.fparam_std = None
            self.fparam_inv_std = None
        if self.numb_aparam > 0:
            add_data_requirement('aparam', self.numb_aparam, atomic=True,  must=True, high_prec=False)
            self.aparam_avg = None
            self.aparam_std = None
            self.aparam_inv_std = None

        self.fitting_net_variables = None
        self.mixed_prec = None

    def get_numb_fparam(self) -> int:
        """
        Get the number of frame parameters
        """
        return self.numb_fparam

    def get_numb_aparam(self) -> int:
        """
        Get the number of atomic parameters
        """
        return self.numb_fparam

    def compute_output_stats(self, 
                             all_stat: dict,
                             mixed_type: bool = False
    ) -> None:
        """
        Compute the ouput statistics

        Parameters
        ----------
        all_stat
                must have the following components:
                all_stat['energy'] of shape n_sys x n_batch x n_frame
                can be prepared by model.make_stat_input
        mixed_type
                Whether to perform the mixed_type mode.
                If True, the input data has the mixed_type format (see doc/model/train_se_atten.md),
                in which frames in a system may have different natoms_vec(s), with the same nloc.
        """
        self.bias_atom_e = self._compute_output_stats(all_stat, rcond=self.rcond, mixed_type=mixed_type)

    def _compute_output_stats(self, all_stat, rcond=1e-3, mixed_type=False):
        data = all_stat['energy']
        # data[sys_idx][batch_idx][frame_idx]
        sys_ener = np.array([])
        for ss in range(len(data)):
            sys_data = []
            for ii in range(len(data[ss])):
                for jj in range(len(data[ss][ii])):
                    sys_data.append(data[ss][ii][jj])
            sys_data = np.concatenate(sys_data)
            sys_ener = np.append(sys_ener, np.average(sys_data))
        sys_tynatom = np.array([])
        if mixed_type:
            data = all_stat['real_natoms_vec']
            nsys = len(data)
            for ss in range(len(data)):
                tmp_tynatom = []
                for ii in range(len(data[ss])):
                    for jj in range(len(data[ss][ii])):
                        tmp_tynatom.append(data[ss][ii][jj].astype(np.float64))
                tmp_tynatom = np.average(np.array(tmp_tynatom), axis=0)
                sys_tynatom = np.append(sys_tynatom, tmp_tynatom)
        else:
            data = all_stat['natoms_vec']
            nsys = len(data)
            for ss in range(len(data)):
                sys_tynatom = np.append(sys_tynatom, data[ss][0].astype(np.float64))
        sys_tynatom = np.reshape(sys_tynatom, [nsys,-1])
        sys_tynatom = sys_tynatom[:,2:]
        if len(self.atom_ener) > 0:
            # Atomic energies stats are incorrect if atomic energies are assigned.
            # In this situation, we directly use these assigned energies instead of computing stats.
            # This will make the loss decrease quickly
            assigned_atom_ener = np.array(list((ee for ee in self.atom_ener_v if ee is not None)))
            assigned_ener_idx = list((ii for ii, ee in enumerate(self.atom_ener_v) if ee is not None))
            # np.dot out size: nframe
            sys_ener -= np.dot(sys_tynatom[:, assigned_ener_idx], assigned_atom_ener)
            sys_tynatom[:, assigned_ener_idx] = 0.
        energy_shift,resd,rank,s_value \
            = np.linalg.lstsq(sys_tynatom, sys_ener, rcond = rcond)
        if len(self.atom_ener) > 0:
            for ii in assigned_ener_idx:
                energy_shift[ii] = self.atom_ener_v[ii]
        return energy_shift    

    def compute_input_stats(self, 
                            all_stat : dict,
                            protection : float = 1e-2) -> None:
        """
        Compute the input statistics

        Parameters
        ----------
        all_stat
                if numb_fparam > 0 must have all_stat['fparam']
                if numb_aparam > 0 must have all_stat['aparam']
                can be prepared by model.make_stat_input
        protection
                Divided-by-zero protection
        """
        # stat fparam
        if self.numb_fparam > 0:
            cat_data = np.concatenate(all_stat['fparam'], axis = 0)
            cat_data = np.reshape(cat_data, [-1, self.numb_fparam])
            self.fparam_avg = np.average(cat_data, axis = 0)
            self.fparam_std = np.std(cat_data, axis = 0)
            for ii in range(self.fparam_std.size):
                if self.fparam_std[ii] < protection:
                    self.fparam_std[ii] = protection
            self.fparam_inv_std = 1./self.fparam_std
        # stat aparam
        if self.numb_aparam > 0:
            sys_sumv = []
            sys_sumv2 = []
            sys_sumn = []
            for ss_ in all_stat['aparam'] : 
                ss = np.reshape(ss_, [-1, self.numb_aparam])
                sys_sumv.append(np.sum(ss, axis = 0))
                sys_sumv2.append(np.sum(np.multiply(ss, ss), axis = 0))
                sys_sumn.append(ss.shape[0])
            sumv = np.sum(sys_sumv, axis = 0)
            sumv2 = np.sum(sys_sumv2, axis = 0)
            sumn = np.sum(sys_sumn)
            self.aparam_avg = (sumv)/sumn
            self.aparam_std = self._compute_std(sumv2, sumv, sumn)
            for ii in range(self.aparam_std.size):
                if self.aparam_std[ii] < protection:
                    self.aparam_std[ii] = protection
            self.aparam_inv_std = 1./self.aparam_std


    def _compute_std (self, sumv2, sumv, sumn) :
        return np.sqrt(sumv2/sumn - np.multiply(sumv/sumn, sumv/sumn))

    def _build_lower(
            self,
            start_index,
            natoms,
            inputs,
            fparam = None,
            aparam = None, 
            bias_atom_e = 0.0,
            suffix = '',
            reuse = None
    ):
        # cut-out inputs
        inputs_i = tf.slice (inputs,
                             [ 0, start_index, 0],
                             [-1, natoms, -1] )
        inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
        layer = inputs_i
        if fparam is not None:
            ext_fparam = tf.tile(fparam, [1, natoms])
            ext_fparam = tf.reshape(ext_fparam, [-1, self.numb_fparam])
            ext_fparam = tf.cast(ext_fparam,self.fitting_precision)
            layer = tf.concat([layer, ext_fparam], axis = 1)
        if aparam is not None:
            ext_aparam = tf.slice(aparam, 
                                  [ 0, start_index      * self.numb_aparam],
                                  [-1, natoms * self.numb_aparam])
            ext_aparam = tf.reshape(ext_aparam, [-1, self.numb_aparam])
            ext_aparam = tf.cast(ext_aparam,self.fitting_precision)
            layer = tf.concat([layer, ext_aparam], axis = 1)

        if nvnmd_cfg.enable: 
            one_layer = one_layer_nvnmd
        else:
            one_layer = one_layer_deepmd
        for ii in range(0,len(self.n_neuron)) :
            if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] and (not nvnmd_cfg.enable):
                layer+= one_layer(
                    layer,
                    self.n_neuron[ii],
                    name='layer_'+str(ii)+suffix,
                    reuse=reuse,
                    seed = self.seed,
                    use_timestep = self.resnet_dt,
                    activation_fn = self.fitting_activation_fn,
                    precision = self.fitting_precision,
                    trainable = self.trainable[ii],
                    uniform_seed = self.uniform_seed,
                    initial_variables = self.fitting_net_variables,
                    mixed_prec = self.mixed_prec)
            else :
                layer = one_layer(
                    layer,
                    self.n_neuron[ii],
                    name='layer_'+str(ii)+suffix,
                    reuse=reuse,
                    seed = self.seed,
                    activation_fn = self.fitting_activation_fn,
                    precision = self.fitting_precision,
                    trainable = self.trainable[ii],
                    uniform_seed = self.uniform_seed,
                    initial_variables = self.fitting_net_variables,
                    mixed_prec = self.mixed_prec)
            if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
        final_layer = one_layer(
            layer, 
            1, 
            activation_fn = None, 
            bavg = bias_atom_e, 
            name='final_layer'+suffix, 
            reuse=reuse, 
            seed = self.seed, 
            precision = self.fitting_precision, 
            trainable = self.trainable[-1],
            uniform_seed = self.uniform_seed,
            initial_variables = self.fitting_net_variables,
            mixed_prec = self.mixed_prec,
            final_layer = True)
        if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift

        return final_layer
            
            
    @cast_precision
    def build (self, 
               inputs : tf.Tensor,
               natoms : tf.Tensor,
               input_dict : dict = None,
               reuse : bool = None,
               suffix : str = '', 
    ) -> tf.Tensor:
        """
        Build the computational graph for fitting net

        Parameters
        ----------
        inputs
                The input descriptor
        input_dict
                Additional dict for inputs. 
                if numb_fparam > 0, should have input_dict['fparam']
                if numb_aparam > 0, should have input_dict['aparam']
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        ener
                The system energy
        """
        if input_dict is None:
            input_dict = {}
        bias_atom_e = self.bias_atom_e
        type_embedding = input_dict.get('type_embedding', None)
        atype = input_dict.get('atype', None)
        if self.numb_fparam > 0:
            if self.fparam_avg is None:
                self.fparam_avg = 0.
            if self.fparam_inv_std is None:
                self.fparam_inv_std = 1.
        if self.numb_aparam > 0:
            if self.aparam_avg is None:
                self.aparam_avg = 0.
            if self.aparam_inv_std is None:
                self.aparam_inv_std = 1.

        with tf.variable_scope('fitting_attr' + suffix, reuse = reuse) :
            t_dfparam = tf.constant(self.numb_fparam, 
                                    name = 'dfparam', 
                                    dtype = tf.int32)
            t_daparam = tf.constant(self.numb_aparam, 
                                    name = 'daparam', 
                                    dtype = tf.int32)
            if type_embedding is not None:
                self.t_bias_atom_e = tf.get_variable('t_bias_atom_e',
                                            self.bias_atom_e.shape,
                                            dtype=self.fitting_precision,
                                            trainable=False,
                                            initializer=tf.constant_initializer(self.bias_atom_e))
            if self.numb_fparam > 0: 
                t_fparam_avg = tf.get_variable('t_fparam_avg', 
                                               self.numb_fparam,
                                               dtype = GLOBAL_TF_FLOAT_PRECISION,
                                               trainable = False,
                                               initializer = tf.constant_initializer(self.fparam_avg))
                t_fparam_istd = tf.get_variable('t_fparam_istd', 
                                                self.numb_fparam,
                                                dtype = GLOBAL_TF_FLOAT_PRECISION,
                                                trainable = False,
                                                initializer = tf.constant_initializer(self.fparam_inv_std))
            if self.numb_aparam > 0: 
                t_aparam_avg = tf.get_variable('t_aparam_avg', 
                                               self.numb_aparam,
                                               dtype = GLOBAL_TF_FLOAT_PRECISION,
                                               trainable = False,
                                               initializer = tf.constant_initializer(self.aparam_avg))
                t_aparam_istd = tf.get_variable('t_aparam_istd', 
                                                self.numb_aparam,
                                                dtype = GLOBAL_TF_FLOAT_PRECISION,
                                                trainable = False,
                                                initializer = tf.constant_initializer(self.aparam_inv_std))
            
        inputs = tf.reshape(inputs, [-1, natoms[0], self.dim_descrpt])
        if len(self.atom_ener):
            # only for atom_ener
            nframes = input_dict.get('nframes')
            if nframes is not None:
                # like inputs, but we don't want to add a dependency on inputs
                inputs_zero = tf.zeros((nframes, natoms[0], self.dim_descrpt), dtype=self.fitting_precision)
            else:
                inputs_zero = tf.zeros_like(inputs, dtype=self.fitting_precision)
        

        if bias_atom_e is not None :
            assert(len(bias_atom_e) == self.ntypes)

        fparam = None
        aparam = None
        if self.numb_fparam > 0 :
            fparam = input_dict['fparam']
            fparam = tf.reshape(fparam, [-1, self.numb_fparam])
            fparam = (fparam - t_fparam_avg) * t_fparam_istd            
        if self.numb_aparam > 0 :
            aparam = input_dict['aparam']
            aparam = tf.reshape(aparam, [-1, self.numb_aparam])
            aparam = (aparam - t_aparam_avg) * t_aparam_istd
            aparam = tf.reshape(aparam, [-1, self.numb_aparam * natoms[0]])

        if type_embedding is not None:
            atype_nall = tf.reshape(atype, [-1, natoms[1]])
            self.atype_nloc = tf.reshape(tf.slice(atype_nall, [0, 0], [-1, natoms[0]]), [-1])  ## lammps will make error
            atype_embed = tf.nn.embedding_lookup(type_embedding, self.atype_nloc)
        else:
            atype_embed = None

        self.atype_embed = atype_embed

        if atype_embed is None:
            start_index = 0
            outs_list = []
            for type_i in range(self.ntypes):
                if bias_atom_e is None :
                    type_bias_ae = 0.0
                else :
                    type_bias_ae = bias_atom_e[type_i]
                final_layer = self._build_lower(
                    start_index, natoms[2+type_i], 
                    inputs, fparam, aparam, 
                    bias_atom_e=type_bias_ae, suffix='_type_'+str(type_i)+suffix, reuse=reuse
                )
                # concat the results
                if type_i < len(self.atom_ener) and self.atom_ener[type_i] is not None:                
                    zero_layer = self._build_lower(
                        start_index, natoms[2+type_i], 
                        inputs_zero, fparam, aparam, 
                        bias_atom_e=type_bias_ae, suffix='_type_'+str(type_i)+suffix, reuse=True
                    )
                    final_layer += self.atom_ener[type_i] - zero_layer
                final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i]])
                outs_list.append(final_layer)
                start_index += natoms[2+type_i]
            # concat the results
            # concat once may be faster than multiple concat
            outs = tf.concat(outs_list, axis = 1)
        # with type embedding
        else:
            if len(self.atom_ener) > 0:
                raise RuntimeError("setting atom_ener is not supported by type embedding")
            atype_embed = tf.cast(atype_embed, self.fitting_precision)
            type_shape = atype_embed.get_shape().as_list()
            inputs = tf.concat(
                [tf.reshape(inputs,[-1,self.dim_descrpt]),atype_embed],
                axis=1
            )
            self.dim_descrpt = self.dim_descrpt + type_shape[1]
            inputs = tf.reshape(inputs, [-1, natoms[0], self.dim_descrpt])
            final_layer = self._build_lower(
                0, natoms[0], 
                inputs, fparam, aparam, 
                bias_atom_e=0.0, suffix=suffix, reuse=reuse
            )
            outs = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[0]])
            # add bias
            self.atom_ener_before = outs
            self.add_type = tf.reshape(tf.nn.embedding_lookup(self.t_bias_atom_e, self.atype_nloc), [tf.shape(inputs)[0], natoms[0]])
            outs = outs + self.add_type
            self.atom_ener_after = outs

        if self.tot_ener_zero:
            force_tot_ener = 0.0
            outs = tf.reshape(outs, [-1, natoms[0]])
            outs_mean = tf.reshape(tf.reduce_mean(outs, axis = 1), [-1, 1])
            outs_mean = outs_mean - tf.ones_like(outs_mean, dtype = GLOBAL_TF_FLOAT_PRECISION) * (force_tot_ener/global_cvt_2_tf_float(natoms[0]))
            outs = outs - outs_mean
            outs = tf.reshape(outs, [-1])

        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])


    def init_variables(self,
                       graph: tf.Graph,
                       graph_def: tf.GraphDef,
                       suffix : str = "",
    ) -> None:
        """
        Init the fitting net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str
            suffix to name scope
        """
        self.fitting_net_variables = get_fitting_net_variables_from_graph_def(graph_def, suffix=suffix)
        if self.numb_fparam > 0:
            self.fparam_avg = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_fparam_avg' % suffix)
            self.fparam_inv_std = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_fparam_istd' % suffix)
        if self.numb_aparam > 0:
            self.aparam_avg = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_aparam_avg' % suffix)
            self.aparam_inv_std = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_aparam_istd' % suffix)
        try:
            self.bias_atom_e = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_bias_atom_e' % suffix)
        except GraphWithoutTensorError:
            # model without type_embedding has no t_bias_atom_e
            pass

    def enable_compression(self,
                           model_file: str,
                           suffix: str = ""
    ) -> None:
        """
        Set the fitting net attributes from the frozen model_file when fparam or aparam is not zero

        Parameters
        ----------
        model_file : str
            The input frozen model file
        suffix : str, optional
                The suffix of the scope
        """
        if self.numb_fparam > 0 or self.numb_aparam > 0:
            graph, _ = load_graph_def(model_file)
        if self.numb_fparam > 0:
            self.fparam_avg = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_fparam_avg' % suffix)
            self.fparam_inv_std = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_fparam_istd' % suffix)
        if self.numb_aparam > 0:
            self.aparam_avg = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_aparam_avg' % suffix)
            self.aparam_inv_std = get_tensor_by_name_from_graph(graph, 'fitting_attr%s/t_aparam_istd' % suffix)
 

    def enable_mixed_precision(self, mixed_prec: dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.mixed_prec = mixed_prec
        self.fitting_precision = get_precision(mixed_prec['output_prec'])