"vscode:/vscode.git/clone" did not exist on "3ae93ca9b706579df34ac790385b386c7982a5fe"
dipole.py 8.61 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import warnings
import numpy as np
from typing import Tuple, List

from deepmd.env import tf
from deepmd.common import add_data_requirement, get_activation_func, get_precision, cast_precision
from deepmd.utils.network import one_layer, one_layer_rand_seed_shift
from deepmd.utils.graph import get_fitting_net_variables_from_graph_def
from deepmd.descriptor import DescrptSeA
from deepmd.fit.fitting import Fitting

from deepmd.env import global_cvt_2_tf_float
from deepmd.env import GLOBAL_TF_FLOAT_PRECISION

class DipoleFittingSeA (Fitting) :
    """
    Fit the atomic dipole with descriptor se_a
    
    Parameters
    ----------
    descrpt : tf.Tensor
            The descrptor
    neuron : List[int]
            Number of neurons in each hidden layer of the fitting net
    resnet_dt : bool
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    sel_type : List[int]
            The atom types selected to have an atomic dipole prediction. If is None, all atoms are selected.
    seed : int
            Random seed for initializing the network parameters.
    activation_function : str
            The activation function in the embedding net. Supported options are |ACTIVATION_FN|
    precision : str
            The precision of the embedding net parameters. Supported options are |PRECISION|
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    """
    def __init__ (self, 
                  descrpt : tf.Tensor,
                  neuron : List[int] = [120,120,120], 
                  resnet_dt : bool = True,
                  sel_type : List[int] = None,
                  seed : int = None,
                  activation_function : str = 'tanh',
                  precision : str = 'default',
                  uniform_seed: bool = False
    ) -> None:
        """
        Constructor
        """
        if not isinstance(descrpt, DescrptSeA) :
            raise RuntimeError('DipoleFittingSeA only supports DescrptSeA')
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        # args = ClassArg()\
        #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
        #        .add('resnet_dt',        bool,   default = True)\
        #        .add('sel_type',         [list,int],   default = [ii for ii in range(self.ntypes)], alias = 'dipole_type')\
        #        .add('seed',             int)\
        #        .add("activation_function", str, default = "tanh")\
        #        .add('precision',           str,    default = "default")
        # class_data = args.parse(jdata)
        self.n_neuron = neuron
        self.resnet_dt = resnet_dt
        self.sel_type = sel_type
        if self.sel_type is None:
            self.sel_type = [ii for ii in range(self.ntypes)]
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = one_layer_rand_seed_shift()
        self.fitting_activation_fn = get_activation_func(activation_function)
        self.fitting_precision = get_precision(precision)
        self.dim_rot_mat_1 = descrpt.get_dim_rot_mat_1()
        self.dim_rot_mat = self.dim_rot_mat_1 * 3
        self.useBN = False
        self.fitting_net_variables = None
        self.mixed_prec = None

    def get_sel_type(self) -> int:
        """
        Get selected type
        """
        return self.sel_type

    def get_out_size(self) -> int:
        """
        Get the output size. Should be 3
        """
        return 3

    @cast_precision
    def build (self, 
               input_d : tf.Tensor,
               rot_mat : tf.Tensor,
               natoms : tf.Tensor,
               reuse : bool = None,
               suffix : str = '') -> tf.Tensor:
        """
        Build the computational graph for fitting net
        
        Parameters
        ----------
        input_d
                The input descriptor
        rot_mat
                The rotation matrix from the descriptor.
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        dipole
                The atomic dipole.
        """
        start_index = 0
        inputs = tf.reshape(input_d, [-1, natoms[0], self.dim_descrpt])
        rot_mat = tf.reshape(rot_mat, [-1, natoms[0], self.dim_rot_mat])

        count = 0
        outs_list = []
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index, 0],
                                 [-1, natoms[2+type_i], -1] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index, 0],
                                  [-1, natoms[2+type_i], -1] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            # (nframes x natoms) x naxis
            final_layer = one_layer(layer, self.dim_rot_mat_1, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec, final_layer = True)
            if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            # (nframes x natoms) x 1 * naxis
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], 1, self.dim_rot_mat_1])
            # (nframes x natoms) x 1 x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # nframes x natoms x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], 3])

            # concat the results
            outs_list.append(final_layer)
            count += 1
        outs = tf.concat(outs_list, axis = 1)

        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])
        # return tf.reshape(outs, [tf.shape(inputs)[0] * natoms[0] * 3 // 3])

    def init_variables(self,
                       graph: tf.Graph,
                       graph_def: tf.GraphDef,
                       suffix : str = "",
    ) -> None:
        """
        Init the fitting net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str
            suffix to name scope
        """
        self.fitting_net_variables = get_fitting_net_variables_from_graph_def(graph_def, suffix=suffix)


    def enable_mixed_precision(self, mixed_prec : dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.mixed_prec = mixed_prec
        self.fitting_precision = get_precision(mixed_prec['output_prec'])