test.py 17.7 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""Test trained DeePMD model."""
import logging
from pathlib import Path
from typing import TYPE_CHECKING, List, Dict, Optional, Tuple

import numpy as np
from deepmd import DeepPotential
from deepmd.common import expand_sys_str
from deepmd.utils import random as dp_random
from deepmd.utils.data import DeepmdData
from deepmd.utils.weight_avg import weighted_average

if TYPE_CHECKING:
    from deepmd.infer import DeepDipole, DeepPolar, DeepPot, DeepWFC
    from deepmd.infer.deep_tensor import DeepTensor

__all__ = ["test"]

log = logging.getLogger(__name__)


def test(
    *,
    model: str,
    system: str,
    set_prefix: str,
    numb_test: int,
    rand_seed: Optional[int],
    shuffle_test: bool,
    detail_file: str,
    atomic: bool,
    **kwargs,
):
    """Test model predictions.

    Parameters
    ----------
    model : str
        path where model is stored
    system : str
        system directory
    set_prefix : str
        string prefix of set
    numb_test : int
        munber of tests to do
    rand_seed : Optional[int]
        seed for random generator
    shuffle_test : bool
        whether to shuffle tests
    detail_file : Optional[str]
        file where test details will be output
    atomic : bool
        whether per atom quantities should be computed

    Raises
    ------
    RuntimeError
        if no valid system was found
    """
    all_sys = expand_sys_str(system)
    if len(all_sys) == 0:
        raise RuntimeError("Did not find valid system")
    err_coll = []
    siz_coll = []

    # init random seed
    if rand_seed is not None:
        dp_random.seed(rand_seed % (2 ** 32))

    # init model
    dp = DeepPotential(model)

    for cc, system in enumerate(all_sys):
        log.info("# ---------------output of dp test--------------- ")
        log.info(f"# testing system : {system}")

        # create data class
        tmap = dp.get_type_map() if dp.model_type == "ener" else None
        data = DeepmdData(system, set_prefix, shuffle_test=shuffle_test, type_map=tmap)

        if dp.model_type == "ener":
            err = test_ener(
                dp,
                data,
                system,
                numb_test,
                detail_file,
                atomic,
                append_detail=(cc != 0),
            )
        elif dp.model_type == "dipole":
            err = test_dipole(dp, data, numb_test, detail_file, atomic)
        elif dp.model_type == "polar":
            err = test_polar(dp, data, numb_test, detail_file, atomic=atomic)
        elif dp.model_type == "global_polar":   # should not appear in this new version
            log.warning("Global polar model is not currently supported. Please directly use the polar mode and change loss parameters.")
            err = test_polar(dp, data, numb_test, detail_file, atomic=False)    # YWolfeee: downward compatibility
        log.info("# ----------------------------------------------- ")
        err_coll.append(err)

    avg_err = weighted_average(err_coll)

    if len(all_sys) != len(err_coll):
        log.warning("Not all systems are tested! Check if the systems are valid")

    if len(all_sys) > 1:
        log.info("# ----------weighted average of errors----------- ")
        log.info(f"# number of systems : {len(all_sys)}")
        if dp.model_type == "ener":
            print_ener_sys_avg(avg_err)
        elif dp.model_type == "dipole":
            print_dipole_sys_avg(avg_err)
        elif dp.model_type == "polar":
            print_polar_sys_avg(avg_err)
        elif dp.model_type == "global_polar":
            print_polar_sys_avg(avg_err)
        elif dp.model_type == "wfc":
            print_wfc_sys_avg(avg_err)
        log.info("# ----------------------------------------------- ")


def rmse(diff: np.ndarray) -> np.ndarray:
    """Calculate average root mean square error.

    Parameters
    ----------
    diff: np.ndarray
        difference

    Returns
    -------
    np.ndarray
        array with normalized difference
    """
    return np.sqrt(np.average(diff * diff))


def save_txt_file(
    fname: Path, data: np.ndarray, header: str = "", append: bool = False
):
    """Save numpy array to test file.

    Parameters
    ----------
    fname : str
        filename
    data : np.ndarray
        data to save to disk
    header : str, optional
        header string to use in file, by default ""
    append : bool, optional
        if true file will be appended insted of overwriting, by default False
    """
    flags = "ab" if append else "w"
    with fname.open(flags) as fp:
        np.savetxt(fp, data, header=header)


def test_ener(
    dp: "DeepPot",
    data: DeepmdData,
    system: str,
    numb_test: int,
    detail_file: Optional[str],
    has_atom_ener: bool,
    append_detail: bool = False,
) -> Tuple[List[np.ndarray], List[int]]:
    """Test energy type model.

    Parameters
    ----------
    dp : DeepPot
        instance of deep potential
    data: DeepmdData
        data container object
    system : str
        system directory
    numb_test : int
        munber of tests to do
    detail_file : Optional[str]
        file where test details will be output
    has_atom_ener : bool
        whether per atom quantities should be computed
    append_detail : bool, optional
        if true append output detail file, by default False

    Returns
    -------
    Tuple[List[np.ndarray], List[int]]
        arrays with results and their shapes
    """
    data.add("energy", 1, atomic=False, must=False, high_prec=True)
    data.add("force", 3, atomic=True, must=False, high_prec=False)
    data.add("virial", 9, atomic=False, must=False, high_prec=False)
    if dp.has_efield:
        data.add("efield", 3, atomic=True, must=True, high_prec=False)
    if has_atom_ener:
        data.add("atom_ener", 1, atomic=True, must=True, high_prec=False)
    if dp.get_dim_fparam() > 0:
        data.add(
            "fparam", dp.get_dim_fparam(), atomic=False, must=True, high_prec=False
        )
    if dp.get_dim_aparam() > 0:
        data.add("aparam", dp.get_dim_aparam(), atomic=True, must=True, high_prec=False)

    test_data = data.get_test()
    natoms = len(test_data["type"][0])
    nframes = test_data["box"].shape[0]
    numb_test = min(nframes, numb_test)

    coord = test_data["coord"][:numb_test].reshape([numb_test, -1])
    box = test_data["box"][:numb_test]
    if dp.has_efield:
        efield = test_data["efield"][:numb_test].reshape([numb_test, -1])
    else:
        efield = None
    if not data.pbc:
        box = None
    atype = test_data["type"][0]
    if dp.get_dim_fparam() > 0:
        fparam = test_data["fparam"][:numb_test]
    else:
        fparam = None
    if dp.get_dim_aparam() > 0:
        aparam = test_data["aparam"][:numb_test]
    else:
        aparam = None

    ret = dp.eval(
        coord,
        box,
        atype,
        fparam=fparam,
        aparam=aparam,
        atomic=has_atom_ener,
        efield=efield,
    )
    energy = ret[0]
    force = ret[1]
    virial = ret[2]
    energy = energy.reshape([numb_test, 1])
    force = force.reshape([numb_test, -1])
    virial = virial.reshape([numb_test, 9])
    if has_atom_ener:
        ae = ret[3]
        av = ret[4]
        ae = ae.reshape([numb_test, -1])
        av = av.reshape([numb_test, -1])

    rmse_e = rmse(energy - test_data["energy"][:numb_test].reshape([-1, 1]))
    rmse_f = rmse(force - test_data["force"][:numb_test])
    rmse_v = rmse(virial - test_data["virial"][:numb_test])
    rmse_ea = rmse_e / natoms
    rmse_va = rmse_v / natoms
    if has_atom_ener:
        rmse_ae = rmse(
            test_data["atom_ener"][:numb_test].reshape([-1]) - ae.reshape([-1])
        )

    # print ("# energies: %s" % energy)
    log.info(f"# number of test data : {numb_test:d} ")
    log.info(f"Energy RMSE        : {rmse_e:e} eV")
    log.info(f"Energy RMSE/Natoms : {rmse_ea:e} eV")
    log.info(f"Force  RMSE        : {rmse_f:e} eV/A")
    if data.pbc:
        log.info(f"Virial RMSE        : {rmse_v:e} eV")
        log.info(f"Virial RMSE/Natoms : {rmse_va:e} eV")
    if has_atom_ener:
        log.info(f"Atomic ener RMSE   : {rmse_ae:e} eV")

    if detail_file is not None:
        detail_path = Path(detail_file)

        pe = np.concatenate(
            (
                np.reshape(test_data["energy"][:numb_test], [-1, 1]),
                np.reshape(energy, [-1, 1]),
            ),
            axis=1,
        )
        save_txt_file(
            detail_path.with_suffix(".e.out"),
            pe,
            header="%s: data_e pred_e" % system,
            append=append_detail,
        )
        pf = np.concatenate(
            (
                np.reshape(test_data["force"][:numb_test], [-1, 3]),
                np.reshape(force, [-1, 3]),
            ),
            axis=1,
        )
        save_txt_file(
            detail_path.with_suffix(".f.out"),
            pf,
            header="%s: data_fx data_fy data_fz pred_fx pred_fy pred_fz" % system,
            append=append_detail,
        )
        pv = np.concatenate(
            (
                np.reshape(test_data["virial"][:numb_test], [-1, 9]),
                np.reshape(virial, [-1, 9]),
            ),
            axis=1,
        )
        save_txt_file(
            detail_path.with_suffix(".v.out"),
            pv,
            header=f"{system}: data_vxx data_vxy data_vxz data_vyx data_vyy "
            "data_vyz data_vzx data_vzy data_vzz pred_vxx pred_vxy pred_vxz pred_vyx "
            "pred_vyy pred_vyz pred_vzx pred_vzy pred_vzz",
            append=append_detail,
        )
    return {
        "rmse_ea" : (rmse_ea, energy.size),
        "rmse_f" : (rmse_f, force.size),
        "rmse_va" : (rmse_va, virial.size),
    }


def print_ener_sys_avg(avg: Dict[str,float]):
    """Print errors summary for energy type potential.

    Parameters
    ----------
    avg : np.ndarray
        array with summaries
    """
    log.info(f"Energy RMSE/Natoms : {avg['rmse_ea']:e} eV")
    log.info(f"Force  RMSE        : {avg['rmse_f']:e} eV/A")
    log.info(f"Virial RMSE/Natoms : {avg['rmse_va']:e} eV")


def run_test(dp: "DeepTensor", test_data: dict, numb_test: int):
    """Run tests.

    Parameters
    ----------
    dp : DeepTensor
        instance of deep potential
    test_data : dict
        dictionary with test data
    numb_test : int
        munber of tests to do

    Returns
    -------
    [type]
        [description]
    """
    nframes = test_data["box"].shape[0]
    numb_test = min(nframes, numb_test)

    coord = test_data["coord"][:numb_test].reshape([numb_test, -1])
    box = test_data["box"][:numb_test]
    atype = test_data["type"][0]
    prediction = dp.eval(coord, box, atype)

    return prediction.reshape([numb_test, -1]), numb_test, atype


def test_wfc(
    dp: "DeepWFC",
    data: DeepmdData,
    numb_test: int,
    detail_file: Optional[str],
) -> Tuple[List[np.ndarray], List[int]]:
    """Test energy type model.

    Parameters
    ----------
    dp : DeepPot
        instance of deep potential
    data: DeepmdData
        data container object
    numb_test : int
        munber of tests to do
    detail_file : Optional[str]
        file where test details will be output

    Returns
    -------
    Tuple[List[np.ndarray], List[int]]
        arrays with results and their shapes
    """
    data.add(
        "wfc", 12, atomic=True, must=True, high_prec=False, type_sel=dp.get_sel_type()
    )
    test_data = data.get_test()
    wfc, numb_test, _ = run_test(dp, test_data, numb_test)
    rmse_f = rmse(wfc - test_data["wfc"][:numb_test])

    log.info("# number of test data : {numb_test:d} ")
    log.info("WFC  RMSE : {rmse_f:e} eV/A")

    if detail_file is not None:
        detail_path = Path(detail_file)
        pe = np.concatenate(
            (
                np.reshape(test_data["wfc"][:numb_test], [-1, 12]),
                np.reshape(wfc, [-1, 12]),
            ),
            axis=1,
        )
        np.savetxt(
            detail_path.with_suffix(".out"),
            pe,
            header="ref_wfc(12 dofs)   predicted_wfc(12 dofs)",
        )
    return {
        'rmse' : (rmse_f, wfc.size)
    }


def print_wfc_sys_avg(avg):
    """Print errors summary for wfc type potential.

    Parameters
    ----------
    avg : np.ndarray
        array with summaries
    """
    log.info(f"WFC  RMSE : {avg['rmse']:e} eV/A")


def test_polar(
    dp: "DeepPolar",
    data: DeepmdData,
    numb_test: int,
    detail_file: Optional[str],
    *,
    atomic: bool,
) -> Tuple[List[np.ndarray], List[int]]:
    """Test energy type model.

    Parameters
    ----------
    dp : DeepPot
        instance of deep potential
    data: DeepmdData
        data container object
    numb_test : int
        munber of tests to do
    detail_file : Optional[str]
        file where test details will be output
    global_polar : bool
        wheter to use glovbal version of polar potential

    Returns
    -------
    Tuple[List[np.ndarray], List[int]]
        arrays with results and their shapes
    """
    data.add(
        "polarizability" if not atomic else "atomic_polarizability",
        9,
        atomic=atomic,
        must=True,
        high_prec=False,
        type_sel=dp.get_sel_type(),
    )
    
    test_data = data.get_test()
    polar, numb_test, atype = run_test(dp, test_data, numb_test)

    sel_type = dp.get_sel_type()
    sel_natoms = 0
    for ii in sel_type:
        sel_natoms += sum(atype == ii)

    # YWolfeee: do summation in global polar mode
    if not atomic:
        polar = np.sum(polar.reshape((polar.shape[0],-1,9)),axis=1)    
        rmse_f = rmse(polar - test_data["polarizability"][:numb_test])
        rmse_fs = rmse_f / np.sqrt(sel_natoms)
        rmse_fa = rmse_f / sel_natoms
    else:
        rmse_f = rmse(polar - test_data["atomic_polarizability"][:numb_test])
    
    log.info(f"# number of test data : {numb_test:d} ")
    log.info(f"Polarizability  RMSE       : {rmse_f:e}")
    if not atomic:
        log.info(f"Polarizability  RMSE/sqrtN : {rmse_fs:e}")
        log.info(f"Polarizability  RMSE/N     : {rmse_fa:e}")
    log.info(f"The unit of error is the same as the unit of provided label.")

    if detail_file is not None:
        detail_path = Path(detail_file)

        pe = np.concatenate(
            (
                np.reshape(test_data["polarizability"][:numb_test], [-1, 9]),
                np.reshape(polar, [-1, 9]),
            ),
            axis=1,
        )
        np.savetxt(
            detail_path.with_suffix(".out"),
            pe,
            header="data_pxx data_pxy data_pxz data_pyx data_pyy data_pyz data_pzx "
            "data_pzy data_pzz pred_pxx pred_pxy pred_pxz pred_pyx pred_pyy pred_pyz "
            "pred_pzx pred_pzy pred_pzz",
        )
    return {
        "rmse" : (rmse_f, polar.size)
    }


def print_polar_sys_avg(avg):
    """Print errors summary for polar type potential.

    Parameters
    ----------
    avg : np.ndarray
        array with summaries
    """
    log.info(f"Polarizability  RMSE : {avg['rmse']:e} eV/A")


def test_dipole(
    dp: "DeepDipole",
    data: DeepmdData,
    numb_test: int,
    detail_file: Optional[str],
    atomic: bool,
) -> Tuple[List[np.ndarray], List[int]]:
    """Test energy type model.

    Parameters
    ----------
    dp : DeepPot
        instance of deep potential
    data: DeepmdData
        data container object
    numb_test : int
        munber of tests to do
    detail_file : Optional[str]
        file where test details will be output
    atomic : bool
        whether atomic dipole is provided

    Returns
    -------
    Tuple[List[np.ndarray], List[int]]
        arrays with results and their shapes
    """
    data.add(
        "dipole" if not atomic else "atomic_dipole",
        3, 
        atomic=atomic, 
        must=True, 
        high_prec=False, 
        type_sel=dp.get_sel_type()
    )
    test_data = data.get_test()
    dipole, numb_test, atype = run_test(dp, test_data, numb_test)

    sel_type = dp.get_sel_type()
    sel_natoms = 0
    for ii in sel_type:
        sel_natoms += sum(atype == ii)
    
    # do summation in atom dimension
    if not atomic:
        dipole = np.sum(dipole.reshape((dipole.shape[0], -1, 3)),axis=1)
        rmse_f = rmse(dipole - test_data["dipole"][:numb_test])
        rmse_fs = rmse_f / np.sqrt(sel_natoms)
        rmse_fa = rmse_f / sel_natoms
    else:
        rmse_f = rmse(dipole - test_data["atomic_dipole"][:numb_test])
    
    log.info(f"# number of test data : {numb_test:d}")
    log.info(f"Dipole  RMSE       : {rmse_f:e}")
    if not atomic:
        log.info(f"Dipole  RMSE/sqrtN : {rmse_fs:e}")
        log.info(f"Dipole  RMSE/N     : {rmse_fa:e}")
    log.info(f"The unit of error is the same as the unit of provided label.")

    if detail_file is not None:
        detail_path = Path(detail_file)

        pe = np.concatenate(
            (
                np.reshape(test_data["dipole"][:numb_test], [-1, 3]),
                np.reshape(dipole, [-1, 3]),
            ),
            axis=1,
        )
        np.savetxt(
            detail_path.with_suffix(".out"),
            pe,
            header="data_x data_y data_z pred_x pred_y pred_z",
        )
    return {
        'rmse' : (rmse_f, dipole.size)
    }


def print_dipole_sys_avg(avg):
    """Print errors summary for dipole type potential.

    Parameters
    ----------
    avg : np.ndarray
        array with summaries
    """
    log.info(f"Dipole  RMSE         : {avg['rmse']:e} eV/A")