se_a.py 41.2 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
import math
import numpy as np
from typing import Tuple, List, Dict, Any

from deepmd.env import tf
from deepmd.common import get_activation_func, get_precision, cast_precision
from deepmd.env import GLOBAL_TF_FLOAT_PRECISION
from deepmd.env import GLOBAL_NP_FLOAT_PRECISION
from deepmd.env import op_module
from deepmd.env import default_tf_session_config
from deepmd.utils.network import embedding_net, embedding_net_rand_seed_shift
from deepmd.utils.tabulate import DPTabulate
from deepmd.utils.type_embed import embed_atom_type
from deepmd.utils.sess import run_sess
from deepmd.utils.graph import load_graph_def, get_tensor_by_name_from_graph, get_tensor_by_name
from deepmd.utils.errors import GraphWithoutTensorError
from .descriptor import Descriptor
from .se import DescrptSe

from deepmd.nvnmd.descriptor.se_a import descrpt2r4, build_davg_dstd, build_op_descriptor, filter_lower_R42GR, filter_GR2D
from deepmd.nvnmd.utils.config import nvnmd_cfg 

@Descriptor.register("se_e2_a")
@Descriptor.register("se_a")
class DescrptSeA (DescrptSe):
    r"""DeepPot-SE constructed from all information (both angular and radial) of
    atomic configurations. The embedding takes the distance between atoms as input.

    The descriptor :math:`\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}` is given by [1]_

    .. math::
        \mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<

    where :math:`\mathcal{R}^i \in \mathbb{R}^{N \times 4}` is the coordinate
    matrix, and each row of :math:`\mathcal{R}^i` can be constructed as follows

    .. math::
        (\mathcal{R}^i)_j = [
        \begin{array}{c}
            s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}}
        \end{array}
        ]

    where :math:`\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})` is 
    the relative coordinate and :math:`r_{ji}=\lVert \mathbf{R}_{ji} \lVert` is its norm.
    The switching function :math:`s(r)` is defined as:

    .. math::
        s(r)=
        \begin{cases}
        \frac{1}{r}, & r<r_s \\
        \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\
        0, & r \geq r_c
        \end{cases}

    Each row of the embedding matrix  :math:`\mathcal{G}^i \in \mathbb{R}^{N \times M_1}` consists of outputs
    of a embedding network :math:`\mathcal{N}` of :math:`s(r_{ji})`:

    .. math::
        (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))

    :math:`\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}` takes first :math:`M_2`$` columns of
    :math:`\mathcal{G}^i`$`. The equation of embedding network :math:`\mathcal{N}` can be found at
    :meth:`deepmd.utils.network.embedding_net`.

    Parameters
    ----------
    rcut
            The cut-off radius :math:`r_c`
    rcut_smth
            From where the environment matrix should be smoothed :math:`r_s`
    sel : list[str]
            sel[i] specifies the maxmum number of type i atoms in the cut-off radius
    neuron : list[int]
            Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`
    axis_neuron
            Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix)
    resnet_dt
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    trainable
            If the weights of embedding net are trainable.
    seed
            Random seed for initializing the network parameters.
    type_one_side
            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
    exclude_types : List[List[int]]
            The excluded pairs of types which have no interaction with each other.
            For example, `[[0, 1]]` means no interaction between type 0 and type 1.
    set_davg_zero
            Set the shift of embedding net input to zero.
    activation_function
            The activation function in the embedding net. Supported options are |ACTIVATION_FN|
    precision
            The precision of the embedding net parameters. Supported options are |PRECISION|
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    
    References
    ----------
    .. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018.
       End-to-end symmetry preserving inter-atomic potential energy model for finite and extended
       systems. In Proceedings of the 32nd International Conference on Neural Information Processing
       Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.
    """
    def __init__ (self, 
                  rcut: float,
                  rcut_smth: float,
                  sel: List[str],
                  neuron: List[int] = [24,48,96],
                  axis_neuron: int = 8,
                  resnet_dt: bool = False,
                  trainable: bool = True,
                  seed: int = None,
                  type_one_side: bool = True,
                  exclude_types: List[List[int]] = [],
                  set_davg_zero: bool = False,
                  activation_function: str = 'tanh',
                  precision: str = 'default',
                  uniform_seed: bool = False
    ) -> None:
        """
        Constructor
        """
        if rcut < rcut_smth:
            raise RuntimeError("rcut_smth (%f) should be no more than rcut (%f)!" % (rcut_smth, rcut))
        self.sel_a = sel
        self.rcut_r = rcut
        self.rcut_r_smth = rcut_smth
        self.filter_neuron = neuron
        self.n_axis_neuron = axis_neuron
        self.filter_resnet_dt = resnet_dt
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron)
        self.trainable = trainable
        self.compress_activation_fn = get_activation_func(activation_function)
        self.filter_activation_fn = get_activation_func(activation_function)
        self.filter_precision = get_precision(precision)
        self.exclude_types = set()
        for tt in exclude_types:
            assert(len(tt) == 2)
            self.exclude_types.add((tt[0], tt[1]))
            self.exclude_types.add((tt[1], tt[0]))
        self.set_davg_zero = set_davg_zero
        self.type_one_side = type_one_side

        # descrpt config
        self.sel_r = [ 0 for ii in range(len(self.sel_a)) ]
        self.ntypes = len(self.sel_a)
        assert(self.ntypes == len(self.sel_r))
        self.rcut_a = -1
        # numb of neighbors and numb of descrptors
        self.nnei_a = np.cumsum(self.sel_a)[-1]
        self.nnei_r = np.cumsum(self.sel_r)[-1]
        self.nnei = self.nnei_a + self.nnei_r
        self.ndescrpt_a = self.nnei_a * 4
        self.ndescrpt_r = self.nnei_r * 1
        self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r
        self.useBN = False
        self.dstd = None
        self.davg = None
        self.compress = False
        self.embedding_net_variables = None
        self.mixed_prec = None
        self.place_holders = {}
        self.nei_type = np.repeat(np.arange(self.ntypes), self.sel_a)  # like a mask

        avg_zero = np.zeros([self.ntypes,self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        std_ones = np.ones ([self.ntypes,self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        sub_graph = tf.Graph()
        with sub_graph.as_default():
            name_pfx = 'd_sea_'
            for ii in ['coord', 'box']:
                self.place_holders[ii] = tf.placeholder(GLOBAL_NP_FLOAT_PRECISION, [None, None], name = name_pfx+'t_'+ii)
            self.place_holders['type'] = tf.placeholder(tf.int32, [None, None], name=name_pfx+'t_type')
            self.place_holders['natoms_vec'] = tf.placeholder(tf.int32, [self.ntypes+2], name=name_pfx+'t_natoms')
            self.place_holders['default_mesh'] = tf.placeholder(tf.int32, [None], name=name_pfx+'t_mesh')
            self.stat_descrpt, descrpt_deriv, rij, nlist \
                = op_module.prod_env_mat_a(self.place_holders['coord'],
                                         self.place_holders['type'],
                                         self.place_holders['natoms_vec'],
                                         self.place_holders['box'],
                                         self.place_holders['default_mesh'],
                                         tf.constant(avg_zero),
                                         tf.constant(std_ones),
                                         rcut_a = self.rcut_a,
                                         rcut_r = self.rcut_r,
                                         rcut_r_smth = self.rcut_r_smth,
                                         sel_a = self.sel_a,
                                         sel_r = self.sel_r)
        self.sub_sess = tf.Session(graph = sub_graph, config=default_tf_session_config)
        self.original_sel = None


    def get_rcut (self) -> float:
        """
        Returns the cut-off radius
        """
        return self.rcut_r

    def get_ntypes (self) -> int:
        """
        Returns the number of atom types
        """
        return self.ntypes

    def get_dim_out (self) -> int:
        """
        Returns the output dimension of this descriptor
        """
        return self.filter_neuron[-1] * self.n_axis_neuron

    def get_dim_rot_mat_1 (self) -> int:
        """
        Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3
        """
        return self.filter_neuron[-1]

    def get_nlist (self) -> Tuple[tf.Tensor, tf.Tensor, List[int], List[int]]:
        """
        Returns
        -------
        nlist
                Neighbor list
        rij
                The relative distance between the neighbor and the center atom.
        sel_a
                The number of neighbors with full information
        sel_r
                The number of neighbors with only radial information
        """
        return self.nlist, self.rij, self.sel_a, self.sel_r

    def compute_input_stats (self,
                             data_coord : list, 
                             data_box : list, 
                             data_atype : list, 
                             natoms_vec : list,
                             mesh : list, 
                             input_dict : dict
    ) -> None :
        """
        Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.
        
        Parameters
        ----------
        data_coord
                The coordinates. Can be generated by deepmd.model.make_stat_input
        data_box
                The box. Can be generated by deepmd.model.make_stat_input
        data_atype
                The atom types. Can be generated by deepmd.model.make_stat_input
        natoms_vec
                The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input
        mesh
                The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input
        input_dict
                Dictionary for additional input
        """
        all_davg = []
        all_dstd = []
        if True:
            sumr = []
            suma = []
            sumn = []
            sumr2 = []
            suma2 = []
            for cc,bb,tt,nn,mm in zip(data_coord,data_box,data_atype,natoms_vec,mesh) :
                sysr,sysr2,sysa,sysa2,sysn \
                    = self._compute_dstats_sys_smth(cc,bb,tt,nn,mm)
                sumr.append(sysr)
                suma.append(sysa)
                sumn.append(sysn)
                sumr2.append(sysr2)
                suma2.append(sysa2)
            sumr = np.sum(sumr, axis = 0)
            suma = np.sum(suma, axis = 0)
            sumn = np.sum(sumn, axis = 0)
            sumr2 = np.sum(sumr2, axis = 0)
            suma2 = np.sum(suma2, axis = 0)
            for type_i in range(self.ntypes) :
                davgunit = [sumr[type_i]/(sumn[type_i]+1e-15), 0, 0, 0]
                dstdunit = [self._compute_std(sumr2[type_i], sumr[type_i], sumn[type_i]), 
                            self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), 
                            self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), 
                            self._compute_std(suma2[type_i], suma[type_i], sumn[type_i])
                            ]
                davg = np.tile(davgunit, self.ndescrpt // 4)
                dstd = np.tile(dstdunit, self.ndescrpt // 4)
                all_davg.append(davg)
                all_dstd.append(dstd)

        if not self.set_davg_zero:
            self.davg = np.array(all_davg)
        self.dstd = np.array(all_dstd)

    def enable_compression(self,
                           min_nbor_dist : float,
                           model_file : str = 'frozon_model.pb',
                           table_extrapolate : float = 5,
                           table_stride_1 : float = 0.01,
                           table_stride_2 : float = 0.1,
                           check_frequency : int = -1,
                           suffix : str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
        
        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        # do some checks before the mocel compression process
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"
        for tt in self.exclude_types:
            if (tt[0] not in range(self.ntypes)) or (tt[1] not in range(self.ntypes)):
                raise RuntimeError("exclude types" + str(tt) + " must within the number of atomic types " + str(self.ntypes) + "!")
        if (self.ntypes * self.ntypes - len(self.exclude_types) == 0):
            raise RuntimeError("empty embedding-net are not supported in model compression!")

        for ii in range(len(self.filter_neuron) - 1):
            if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]:
                raise NotImplementedError(
                    "Model Compression error: descriptor neuron [%s] is not supported by model compression! "
                    "The size of the next layer of the neural network must be twice the size of the previous layer." 
                    % ','.join([str(item) for item in self.filter_neuron])
                )

        self.compress = True
        self.table = DPTabulate(
            self, self.filter_neuron, model_file, self.type_one_side, self.exclude_types, self.compress_activation_fn, suffix=suffix)
        self.table_config = [table_extrapolate, table_stride_1, table_stride_2, check_frequency]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist, 
                               table_extrapolate, 
                               table_stride_1, 
                               table_stride_2)
        
        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(graph, 'descrpt_attr%s/t_std' % suffix)


    def enable_mixed_precision(self, mixed_prec : dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.mixed_prec = mixed_prec
        self.filter_precision = get_precision(mixed_prec['output_prec'])


    def build (self, 
               coord_ : tf.Tensor, 
               atype_ : tf.Tensor,
               natoms : tf.Tensor,
               box_ : tf.Tensor, 
               mesh : tf.Tensor,
               input_dict : dict, 
               reuse : bool = None,
               suffix : str = ''
    ) -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        davg = self.davg
        dstd = self.dstd
        if nvnmd_cfg.enable and nvnmd_cfg.restore_descriptor: davg, dstd = build_davg_dstd()
        with tf.variable_scope('descrpt_attr' + suffix, reuse = reuse) :
            if davg is None:
                davg = np.zeros([self.ntypes, self.ndescrpt]) 
            if dstd is None:
                dstd = np.ones ([self.ntypes, self.ndescrpt])
            t_rcut = tf.constant(np.max([self.rcut_r, self.rcut_a]), 
                                 name = 'rcut', 
                                 dtype = GLOBAL_TF_FLOAT_PRECISION)
            t_ntypes = tf.constant(self.ntypes, 
                                   name = 'ntypes', 
                                   dtype = tf.int32)
            t_ndescrpt = tf.constant(self.ndescrpt, 
                                     name = 'ndescrpt', 
                                     dtype = tf.int32)            
            t_sel = tf.constant(self.sel_a, 
                                name = 'sel', 
                                dtype = tf.int32)            
            t_original_sel = tf.constant(self.original_sel if self.original_sel is not None else self.sel_a,
                name = 'original_sel',
                dtype = tf.int32)
            self.t_avg = tf.get_variable('t_avg', 
                                         davg.shape, 
                                         dtype = GLOBAL_TF_FLOAT_PRECISION,
                                         trainable = False,
                                         initializer = tf.constant_initializer(davg))
            self.t_std = tf.get_variable('t_std', 
                                         dstd.shape, 
                                         dtype = GLOBAL_TF_FLOAT_PRECISION,
                                         trainable = False,
                                         initializer = tf.constant_initializer(dstd))

        with tf.control_dependencies([t_sel, t_original_sel]):
            coord = tf.reshape (coord_, [-1, natoms[1] * 3])
        box   = tf.reshape (box_, [-1, 9])
        atype = tf.reshape (atype_, [-1, natoms[1]])

        op_descriptor = build_op_descriptor() if nvnmd_cfg.enable else op_module.prod_env_mat_a
        self.descrpt, self.descrpt_deriv, self.rij, self.nlist \
            = op_descriptor           (coord,
                                       atype,
                                       natoms,
                                       box,
                                       mesh,
                                       self.t_avg,
                                       self.t_std,
                                       rcut_a = self.rcut_a,
                                       rcut_r = self.rcut_r,
                                       rcut_r_smth = self.rcut_r_smth,
                                       sel_a = self.sel_a,
                                       sel_r = self.sel_r)
        # only used when tensorboard was set as true
        tf.summary.histogram('descrpt', self.descrpt)
        tf.summary.histogram('rij', self.rij)
        tf.summary.histogram('nlist', self.nlist)

        self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt])
        self._identity_tensors(suffix=suffix)

        self.dout, self.qmat = self._pass_filter(self.descrpt_reshape, 
                                                 atype,
                                                 natoms, 
                                                 input_dict,
                                                 suffix = suffix, 
                                                 reuse = reuse, 
                                                 trainable = self.trainable)

        # only used when tensorboard was set as true
        tf.summary.histogram('embedding_net_output', self.dout)
        return self.dout
    
    def get_rot_mat(self) -> tf.Tensor:
        """
        Get rotational matrix
        """
        return self.qmat

    def prod_force_virial(self, 
                          atom_ener : tf.Tensor, 
                          natoms : tf.Tensor
    ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Compute force and virial

        Parameters
        ----------
        atom_ener
                The atomic energy
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

        Returns
        -------
        force
                The force on atoms
        virial
                The total virial
        atom_virial
                The atomic virial
        """
        [net_deriv] = tf.gradients (atom_ener, self.descrpt_reshape)
        tf.summary.histogram('net_derivative', net_deriv)
        net_deriv_reshape = tf.reshape (net_deriv, [np.cast['int64'](-1), natoms[0] * np.cast['int64'](self.ndescrpt)])        
        force \
            = op_module.prod_force_se_a (net_deriv_reshape,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (net_deriv_reshape,
                                           self.descrpt_deriv,
                                           self.rij,
                                           self.nlist,
                                           natoms,
                                           n_a_sel = self.nnei_a,
                                           n_r_sel = self.nnei_r)
        tf.summary.histogram('force', force)
        tf.summary.histogram('virial', virial)
        tf.summary.histogram('atom_virial', atom_virial)
        
        return force, virial, atom_virial
        

    def _pass_filter(self, 
                     inputs,
                     atype,
                     natoms,
                     input_dict,
                     reuse = None,
                     suffix = '', 
                     trainable = True) :
        if input_dict is not None:
            type_embedding = input_dict.get('type_embedding', None)
        else:
            type_embedding = None
        start_index = 0
        inputs = tf.reshape(inputs, [-1, natoms[0], self.ndescrpt])
        output = []
        output_qmat = []
        if not (self.type_one_side and len(self.exclude_types) == 0) and type_embedding is None:
            for type_i in range(self.ntypes):
                inputs_i = tf.slice (inputs,
                                     [ 0, start_index, 0],
                                     [-1, natoms[2+type_i], -1] )
                inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
                if self.type_one_side:
                    # reuse NN parameters for all types to support type_one_side along with exclude_types
                    reuse = tf.AUTO_REUSE
                    filter_name = 'filter_type_all'+suffix
                else:
                    filter_name = 'filter_type_'+str(type_i)+suffix
                layer, qmat = self._filter(inputs_i, type_i, name=filter_name, natoms=natoms, reuse=reuse, trainable = trainable, activation_fn = self.filter_activation_fn)
                layer = tf.reshape(layer, [tf.shape(inputs)[0], natoms[2+type_i], self.get_dim_out()])
                qmat  = tf.reshape(qmat,  [tf.shape(inputs)[0], natoms[2+type_i], self.get_dim_rot_mat_1() * 3])
                output.append(layer)
                output_qmat.append(qmat)
                start_index += natoms[2+type_i]
        else :
            inputs_i = inputs
            inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
            type_i = -1
            if nvnmd_cfg.enable and nvnmd_cfg.quantize_descriptor: 
                inputs_i = descrpt2r4(inputs_i, natoms)
            layer, qmat = self._filter(inputs_i, type_i, name='filter_type_all'+suffix, natoms=natoms, reuse=reuse, trainable = trainable, activation_fn = self.filter_activation_fn, type_embedding=type_embedding)
            layer = tf.reshape(layer, [tf.shape(inputs)[0], natoms[0], self.get_dim_out()])
            qmat  = tf.reshape(qmat,  [tf.shape(inputs)[0], natoms[0], self.get_dim_rot_mat_1() * 3])
            output.append(layer)
            output_qmat.append(qmat)
        output = tf.concat(output, axis = 1)
        output_qmat = tf.concat(output_qmat, axis = 1)
        return output, output_qmat


    def _compute_dstats_sys_smth (self,
                                 data_coord, 
                                 data_box, 
                                 data_atype,                             
                                 natoms_vec,
                                 mesh) :    
        dd_all \
            = run_sess(self.sub_sess, self.stat_descrpt, 
                                feed_dict = {
                                    self.place_holders['coord']: data_coord,
                                    self.place_holders['type']: data_atype,
                                    self.place_holders['natoms_vec']: natoms_vec,
                                    self.place_holders['box']: data_box,
                                    self.place_holders['default_mesh']: mesh,
                                })
        natoms = natoms_vec
        dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]])
        start_index = 0
        sysr = []
        sysa = []
        sysn = []
        sysr2 = []
        sysa2 = []
        for type_i in range(self.ntypes):
            end_index = start_index + self.ndescrpt * natoms[2+type_i]
            dd = dd_all[:, start_index:end_index]
            dd = np.reshape(dd, [-1, self.ndescrpt])
            start_index = end_index        
            # compute
            dd = np.reshape (dd, [-1, 4])
            ddr = dd[:,:1]
            dda = dd[:,1:]
            sumr = np.sum(ddr)
            suma = np.sum(dda) / 3.
            sumn = dd.shape[0]
            sumr2 = np.sum(np.multiply(ddr, ddr))
            suma2 = np.sum(np.multiply(dda, dda)) / 3.
            sysr.append(sumr)
            sysa.append(suma)
            sysn.append(sumn)
            sysr2.append(sumr2)
            sysa2.append(suma2)
        return sysr, sysr2, sysa, sysa2, sysn


    def _compute_std (self,sumv2, sumv, sumn) :
        if sumn == 0:
            return 1. / self.rcut_r
        val = np.sqrt(sumv2/sumn - np.multiply(sumv/sumn, sumv/sumn))
        if np.abs(val) < 1e-2:
            val = 1e-2
        return val


    def _concat_type_embedding(
            self,
            xyz_scatter,
            nframes,
            natoms,
            type_embedding,
    ):
        '''Concatenate `type_embedding` of neighbors and `xyz_scatter`.
        If not self.type_one_side, concatenate `type_embedding` of center atoms as well.

        Parameters
        ----------
        xyz_scatter:
                shape is [nframes*natoms[0]*self.nnei, 1]
        nframes:
                shape is []
        natoms:
                shape is [1+1+self.ntypes]
        type_embedding:
                shape is [self.ntypes, Y] where Y=jdata['type_embedding']['neuron'][-1]

        Returns
        -------
            embedding:
                environment of each atom represented by embedding.
        '''
        te_out_dim = type_embedding.get_shape().as_list()[-1]
        self.t_nei_type = tf.constant(self.nei_type, dtype=tf.int32)
        nei_embed = tf.nn.embedding_lookup(type_embedding,tf.cast(self.t_nei_type,dtype=tf.int32))  # shape is [self.nnei, 1+te_out_dim]
        nei_embed = tf.tile(nei_embed,(nframes*natoms[0],1))  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
        nei_embed = tf.reshape(nei_embed,[-1,te_out_dim])
        embedding_input = tf.concat([xyz_scatter,nei_embed],1)  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim]
        if not self.type_one_side:
            atm_embed = embed_atom_type(self.ntypes, natoms, type_embedding)  # shape is [natoms[0], te_out_dim]
            atm_embed = tf.tile(atm_embed,(nframes,self.nnei))  # shape is [nframes*natoms[0], self.nnei*te_out_dim]
            atm_embed = tf.reshape(atm_embed,[-1,te_out_dim])  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
            embedding_input = tf.concat([embedding_input,atm_embed],1)  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim+te_out_dim]
        return embedding_input


    def _filter_lower(
            self,
            type_i,
            type_input,
            start_index,
            incrs_index,
            inputs,
            nframes,
            natoms,
            type_embedding=None,
            is_exclude = False,
            activation_fn = None,
            bavg = 0.0,
            stddev = 1.0,
            trainable = True,
            suffix = '',
    ):
        """
        input env matrix, returns R.G
        """
        outputs_size = [1] + self.filter_neuron
        # cut-out inputs
        # with natom x (nei_type_i x 4)  
        inputs_i = tf.slice (inputs,
                             [ 0, start_index* 4],
                             [-1, incrs_index* 4] )
        shape_i = inputs_i.get_shape().as_list()
        natom = tf.shape(inputs_i)[0]
        # with (natom x nei_type_i) x 4
        inputs_reshape = tf.reshape(inputs_i, [-1, 4])
        # with (natom x nei_type_i) x 1
        xyz_scatter = tf.reshape(tf.slice(inputs_reshape, [0,0],[-1,1]),[-1,1])
        if type_embedding is not None:
            xyz_scatter = self._concat_type_embedding(
                xyz_scatter, nframes, natoms, type_embedding)
            if self.compress:
                raise RuntimeError('compression of type embedded descriptor is not supported at the moment')
        # natom x 4 x outputs_size
        if nvnmd_cfg.enable:
          return filter_lower_R42GR(
            type_i, type_input, inputs_i, is_exclude,
            activation_fn, bavg, stddev, trainable, 
            suffix, self.seed, self.seed_shift, self.uniform_seed,
            self.filter_neuron, self.filter_precision, self.filter_resnet_dt,
            self.embedding_net_variables
          )
        if self.compress and (not is_exclude):
            if self.type_one_side:
                net = 'filter_-1_net_' + str(type_i)
            else:
                net = 'filter_' + str(type_input) + '_net_' + str(type_i)
            info = [self.lower[net], self.upper[net], self.upper[net] * self.table_config[0], self.table_config[1], self.table_config[2], self.table_config[3]]
            return op_module.tabulate_fusion_se_a(tf.cast(self.table.data[net], self.filter_precision), info, xyz_scatter, tf.reshape(inputs_i, [natom, shape_i[1]//4, 4]), last_layer_size = outputs_size[-1])  
        else:
          if (not is_exclude):
              # with (natom x nei_type_i) x out_size
              xyz_scatter = embedding_net(
                  xyz_scatter, 
                  self.filter_neuron, 
                  self.filter_precision, 
                  activation_fn = activation_fn, 
                  resnet_dt = self.filter_resnet_dt,
                  name_suffix = suffix,
                  stddev = stddev,
                  bavg = bavg,
                  seed = self.seed,
                  trainable = trainable, 
                  uniform_seed = self.uniform_seed,
                  initial_variables = self.embedding_net_variables,
                  mixed_prec = self.mixed_prec)
              if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
          else:
            # we can safely return the final xyz_scatter filled with zero directly
            return tf.cast(tf.fill((natom, 4, outputs_size[-1]), 0.), self.filter_precision)
          # natom x nei_type_i x out_size
          xyz_scatter = tf.reshape(xyz_scatter, (-1, shape_i[1]//4, outputs_size[-1]))  
          # When using tf.reshape(inputs_i, [-1, shape_i[1]//4, 4]) below
          # [588 24] -> [588 6 4] correct
          # but if sel is zero
          # [588 0] -> [147 0 4] incorrect; the correct one is [588 0 4]
          # So we need to explicitly assign the shape to tf.shape(inputs_i)[0] instead of -1
          # natom x 4 x outputs_size
          return tf.matmul(tf.reshape(inputs_i, [natom, shape_i[1]//4, 4]), xyz_scatter, transpose_a = True)


    @cast_precision
    def _filter(
            self, 
            inputs, 
            type_input,
            natoms,
            type_embedding = None,
            activation_fn=tf.nn.tanh, 
            stddev=1.0,
            bavg=0.0,
            name='linear', 
            reuse=None,
            trainable = True):
        nframes = tf.shape(tf.reshape(inputs, [-1, natoms[0], self.ndescrpt]))[0]
        # natom x (nei x 4)
        shape = inputs.get_shape().as_list()
        outputs_size = [1] + self.filter_neuron
        outputs_size_2 = self.n_axis_neuron
        all_excluded = all([(type_input, type_i) in self.exclude_types for type_i in range(self.ntypes)])
        if all_excluded:
            # all types are excluded so result and qmat should be zeros
            # we can safaly return a zero matrix...
            # See also https://stackoverflow.com/a/34725458/9567349
            # result: natom x outputs_size x outputs_size_2
            # qmat: natom x outputs_size x 3
            natom = tf.shape(inputs)[0]
            result = tf.cast(tf.fill((natom, outputs_size_2, outputs_size[-1]), 0.), GLOBAL_TF_FLOAT_PRECISION)
            qmat = tf.cast(tf.fill((natom, outputs_size[-1], 3), 0.), GLOBAL_TF_FLOAT_PRECISION)
            return result, qmat
            
        with tf.variable_scope(name, reuse=reuse):
          start_index = 0
          type_i = 0
          # natom x 4 x outputs_size
          if type_embedding is None:
              rets = []
              for type_i in range(self.ntypes):
                  ret = self._filter_lower(
                      type_i, type_input,
                      start_index, self.sel_a[type_i],
                      inputs,
                      nframes,
                      natoms,
                      type_embedding = type_embedding,
                      is_exclude = (type_input, type_i) in self.exclude_types,
                      activation_fn = activation_fn,
                      stddev = stddev,
                      bavg = bavg,
                      trainable = trainable,
                      suffix = "_"+str(type_i))
                  if (type_input, type_i) not in self.exclude_types:
                      # add zero is meaningless; skip
                      rets.append(ret)
                  start_index += self.sel_a[type_i]
              # faster to use accumulate_n than multiple add
              xyz_scatter_1 = tf.accumulate_n(rets)
          else :
              xyz_scatter_1 = self._filter_lower(
                  type_i, type_input,
                  start_index, np.cumsum(self.sel_a)[-1],
                  inputs,
                  nframes,
                  natoms,
                  type_embedding = type_embedding,
                  is_exclude = False,
                  activation_fn = activation_fn,
                  stddev = stddev,
                  bavg = bavg,
                  trainable = trainable)
          if nvnmd_cfg.enable: return filter_GR2D(xyz_scatter_1)
          # natom x nei x outputs_size
          # xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
          # natom x nei x 4
          # inputs_reshape = tf.reshape(inputs, [-1, shape[1]//4, 4])
          # natom x 4 x outputs_size
          # xyz_scatter_1 = tf.matmul(inputs_reshape, xyz_scatter, transpose_a = True)
          if self.original_sel is None:
              # shape[1] = nnei * 4
              nnei = shape[1] / 4
          else:
              nnei = tf.cast(tf.Variable(np.sum(self.original_sel), dtype=tf.int32, trainable=False, name="nnei"), self.filter_precision)
          xyz_scatter_1 = xyz_scatter_1 / nnei
          # natom x 4 x outputs_size_2
          xyz_scatter_2 = tf.slice(xyz_scatter_1, [0,0,0],[-1,-1,outputs_size_2])
          # # natom x 3 x outputs_size_2
          # qmat = tf.slice(xyz_scatter_2, [0,1,0], [-1, 3, -1])
          # natom x 3 x outputs_size_1
          qmat = tf.slice(xyz_scatter_1, [0,1,0], [-1, 3, -1])
          # natom x outputs_size_1 x 3
          qmat = tf.transpose(qmat, perm = [0, 2, 1])
          # natom x outputs_size x outputs_size_2
          result = tf.matmul(xyz_scatter_1, xyz_scatter_2, transpose_a = True)
          # natom x (outputs_size x outputs_size_2)
          result = tf.reshape(result, [-1, outputs_size_2 * outputs_size[-1]])

        return result, qmat

    def init_variables(self,
                       graph: tf.Graph,
                       graph_def: tf.GraphDef,
                       suffix : str = "",
    ) -> None:
        """
        Init the embedding net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str, optional
            The suffix of the scope
        """
        super().init_variables(graph=graph, graph_def=graph_def, suffix=suffix)
        try:
            self.original_sel = get_tensor_by_name_from_graph(graph, 'descrpt_attr%s/original_sel' % suffix)
        except GraphWithoutTensorError:
            # original_sel is not restored in old graphs, assume sel never changed before
            pass
        # check sel == original sel?
        try:
            sel = get_tensor_by_name_from_graph(graph, 'descrpt_attr%s/sel' % suffix)
        except GraphWithoutTensorError:
            # sel is not restored in old graphs
            pass
        else:
            if not np.array_equal(np.array(self.sel_a), sel):
                if not self.set_davg_zero:
                    raise RuntimeError("Adjusting sel is only supported when `set_davg_zero` is true!")
                # as set_davg_zero, self.davg is safely zero
                self.davg = np.zeros([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
                new_dstd = np.ones([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
                # shape of davg and dstd is (ntypes, ndescrpt), ndescrpt = 4*sel
                n_descpt = np.array(self.sel_a) * 4
                n_descpt_old = np.array(sel) * 4
                end_index = np.cumsum(n_descpt)
                end_index_old = np.cumsum(n_descpt_old)
                start_index = np.roll(end_index, 1)
                start_index[0] = 0
                start_index_old = np.roll(end_index_old, 1)
                start_index_old[0] = 0

                for nn, oo, ii, jj in zip(n_descpt, n_descpt_old, start_index, start_index_old):
                    if nn < oo:
                        # new size is smaller, copy part of std
                        new_dstd[:, ii:ii+nn] = self.dstd[:, jj:jj+nn]
                    else:
                        # new size is larger, copy all, the rest remains 1
                        new_dstd[:, ii:ii+oo] = self.dstd[:, jj:jj+oo]
                self.dstd = new_dstd
                if self.original_sel is None:
                    self.original_sel = sel