README.md 4.76 KB
Newer Older
liucong's avatar
liucong committed
1
# BERT
liucong's avatar
liucong committed
2

liucong's avatar
liucong committed
3
4
5
6
## 论文
Bidirectional Encoder Representation from Transformers

- https://browse.arxiv.org/pdf/1810.04805.pdf
liucong's avatar
liucong committed
7
8

## 模型结构
liucong's avatar
liucong committed
9
以往的预训练模型的结构会受到单向语言模型(从左到右或者从右到左)的限制,因而也限制了模型的表征能力,使其只能获取单方向的上下文信息。而BERT利用MLM进行预训练并且采用深层的双向Transformer组件(单向的Transformer一般被称为Transformer decoder,其每一个token(符号)只会attend到目前往左的token。而双向的Transformer则被称为Transformer encoder,其每一个token会attend到所有的token)来构建整个模型,因此最终生成能融合上下文信息的深层双向语言表征。
liucong's avatar
liucong committed
10

liucong's avatar
liucong committed
11
<img src="./Doc/Images/Bert_01.png" style="zoom:100%;" align=middle>
liucong's avatar
liucong committed
12

liucong's avatar
liucong committed
13
## 算法原理
liucong's avatar
liucong committed
14

liucong's avatar
liucong committed
15
BERT的全称为Bidirectional Encoder Representation from Transformers,是一个预训练的语言表征模型。它强调了不再像以往一样采用传统的单向语言模型或者把两个单向语言模型进行浅层拼接的方法进行预训练,而是采用新的masked language model(MLM),以致能生成深度的双向语言表征。具体方法通过将Token Embedding、Segment Embedding、Position Embedding输入到BERT模型中进行推理,并经过下图所示的数据后处理得到最终的推理结果。
liucong's avatar
liucong committed
16

liucong's avatar
liucong committed
17
<img src="./Doc/Images/Bert_04.png" style="zoom:100%;" align=middle>
liucong's avatar
liucong committed
18

liucong's avatar
liucong committed
19
20
## 环境配置

liucong's avatar
liucong committed
21
### Docker(方法一)
liucong's avatar
liucong committed
22
23
24
25

拉取镜像:

```plaintext
liucong's avatar
liucong committed
26
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.0.0-centos7.6-dtk23.04.1-py38-latest
liucong's avatar
liucong committed
27
28
```

liucong's avatar
liucong committed
29
创建并启动容器:
liucong's avatar
liucong committed
30
31
32
33
34
35
36
37

```plaintext
docker run --shm-size 16g --network=host --name=bert_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/bert_migraphx:/home/bert_migraphx -it <Your Image ID> /bin/bash

# 激活dtk
source /opt/dtk/env.sh
```

liucong's avatar
liucong committed
38
39
40
41
42
43
44
45
46
### Dockerfile(方法二)

```
cd ./docker
docker build --no-cache -t bert_migraphx:2.0 .

docker run --shm-size 16g --network=host --name=bert_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/bert_migraphx:/home/bert_migraphx -it <Your Image ID> /bin/bash
```

liucong's avatar
liucong committed
47
48
49
50
51
52
53
54
55
56
57
## 数据集

在界面中根据提示输入问题,模型预测出答案。

## 推理

### Python版本推理

本次采用经典的Bert模型完成问题回答任务,模型和分词文件下载链接:https://pan.baidu.com/s/1yc30IzM4ocOpTpfFuUMR0w, 提取码:8f1a, 将bertsquad-10.onnx文件和uncased_L-12_H-768_A-12分词文件保存在Resource/文件夹下。下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。

#### 设置环境变量
liucong's avatar
liucong committed
58

liucong's avatar
liucong committed
59
60
61
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
liucong's avatar
liucong committed
62

liucong's avatar
liucong committed
63
#### 运行示例
liucong's avatar
liucong committed
64
65

```python
liucong's avatar
liucong committed
66
67
# 进入bert migraphx工程根目录
cd <path_to_bert_migraphx> 
liucong's avatar
liucong committed
68
69

# 进入示例程序目录
liucong's avatar
liucong committed
70
cd Python/
liucong's avatar
liucong committed
71
72

# 安装依赖
liucong's avatar
liucong committed
73
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
liucong's avatar
liucong committed
74

liucong's avatar
liucong committed
75
# 运行示例
liucong's avatar
liucong committed
76
python bert.py
77
78
```

liucong's avatar
liucong committed
79
### C++版本推理
liucong's avatar
liucong committed
80

liucong's avatar
liucong committed
81
本次采用经典的Bert模型完成问题回答任务,模型和分词文件下载链接:https://pan.baidu.com/s/1yc30IzM4ocOpTpfFuUMR0w, 提取码:8f1a, 将bertsquad-10.onnx文件和uncased_L-12_H-768_A-12分词文件保存在Resource/文件夹下。下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
liucong's avatar
liucong committed
82
83


liucong's avatar
liucong committed
84
#### 构建工程
85
86
87
88
89

```
rbuild build -d depend
```

liucong's avatar
liucong committed
90
#### 设置环境变量
91
92
93
94

将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

```
liucong's avatar
liucong committed
95
export LD_LIBRARY_PATH=<path_to_bert_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
liucong's avatar
liucong committed
96
97
```

98
然后执行:
liucong's avatar
liucong committed
99

100
101
102
103
```
source ~/.bashrc
```

liucong's avatar
liucong committed
104
#### 运行示例
liucong's avatar
liucong committed
105

106
```python
liucong's avatar
liucong committed
107
108
# 进入bert migraphx工程根目录
cd <path_to_bert_migraphx> 
109

liucong's avatar
liucong committed
110
# 进入build目录
liucong's avatar
liucong committed
111
cd build/
112

liucong's avatar
liucong committed
113
114
# 执行示例程序
./Bert
115
116
```

liucong's avatar
liucong committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
## result

### python版本

```
“1”:"open-source exascale-class platform for accelerated computing",
"2":"(Tensorflow / PyTorch)",
"3":"scale"
```

上述序号代表对应的问题:

"1"代表“What is ROCm?”

“2”代表“Which frameworks does ROCm support?”

“3”代表"What is ROCm built for?"

### C++版本
liucong's avatar
liucong committed
136

liucong's avatar
liucong committed
137
138
139
```
question:What is ROCm?
answer:open-source exascale-class platform for accelerated computing
liucong's avatar
liucong committed
140
question:Which frameworks does ROCm support?
liucong's avatar
liucong committed
141
142
143
144
answer:tensorflow / pytorch
question:What is ROCm built for?
answer:scale
```
liucong's avatar
liucong committed
145

liucong's avatar
liucong committed
146
147
148
149
### 精度



liucong's avatar
liucong committed
150
151
152
153
154
155
156
157
158
159
## 应用场景

### 算法类别

`对话问答`

### 热点应用行业

`政府`,`科研`,`金融`,`教育`

liucong's avatar
liucong committed
160
## 源码仓库及问题反馈
liucong's avatar
liucong committed
161
162
163

https://developer.hpccube.com/codes/modelzoo/bert_migraphx

liucong's avatar
liucong committed
164
## 参考资料
liucong's avatar
liucong committed
165
166

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/develop/examples/nlp/python_bert_squad