run_onnx_squad.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import collections
import json
import math
import os
import sys

import numpy as np
import onnxruntime as onnxrt
import six
from tokenizers import BertWordPieceTokenizer
from tokenizers import pre_tokenizers

RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])

Feature = collections.namedtuple("Feature", [
    "unique_id", "tokens", "example_index", "token_to_orig_map",
    "token_is_max_context"
])

class SquadExample(object):
    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
                 end_position=None):
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = []
        s.append("qas_id: %s" % (self.qas_id))
        s.append("question_text: %s" % (self.question_text))
        s.append("doc_tokens: [%s]" % (" ".join(self.doc_tokens)))
        if self.start_position:
            s.append("start_position: %d" % (self.start_position))
        if self.start_position:
            s.append("end_position: %d" % (self.end_position))
        return ", ".join(s)

def check_is_max_context(doc_spans, cur_span_index, position):
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context,
                    num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index

def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length):

    res_input_ids = []
    res_input_mask = []
    res_segment_ids = []
    extra = []
    unique_id = 0

    for (example_index, example) in enumerate(examples):
        
        # 对原始问题文本进行数据处理
        query_tokens = tokenizer.encode(example.question_text) 
        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        # 对上下文文本进行数据处理
        tok_to_orig_index = []   
        orig_to_tok_index = []   
        all_doc_tokens = []      
        for (i, token) in enumerate(example.doc_tokens):  
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.encode(token, add_special_tokens=False)  

            for sub_token in sub_tokens.tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3  

        # 当上下文文本的长度大于规定的最大长度,则使用滑动窗口的方法。
        _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):        
            length = len(all_doc_tokens) - start_offset  
            if length > max_tokens_for_doc:              
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):     # 如果start_offset + length == len(all_doc_tokens),则不进行滑动窗口操作
                break
            start_offset += min(length, doc_stride)

        # 拼接原始问题和上下文文本
        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")                    
            segment_ids.append(0)
            for token in query_tokens.tokens:
                tokens.append(token)                     
                segment_ids.append(0)
            tokens.append("[SEP]")                       
            segment_ids.append(0)                        

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] 

                is_max_context = check_is_max_context(doc_spans,
                                                       doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)          
            tokens.append("[SEP]")             
            segment_ids.append(1)     

            input_ids = []
            for token in tokens:
                input_ids.append(tokenizer.token_to_id(token))  

            # 掩码为1表示真实标记,0表示填充标记。
            input_mask = [1] * len(input_ids)

            # 当序列长度小于max_seq_length时,零填充序列到max_seq_length长度
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)
            res_input_ids.append(np.array(input_ids, dtype=np.int64))
            res_input_mask.append(np.array(input_mask, dtype=np.int64))
            res_segment_ids.append(np.array(segment_ids, dtype=np.int64))
            feature = Feature(unique_id=unique_id,
                              tokens=tokens,
                              example_index=example_index,
                              token_to_orig_map=token_to_orig_map,
                              token_is_max_context=token_is_max_context)
            extra.append(feature)
            unique_id += 1
    return np.array(res_input_ids), np.array(res_input_mask), np.array(
        res_segment_ids), extra

# 将SQuAD json文件读入到一个SquadEexample列表中
def read_squad_examples(input_file):
    with open(input_file, "r") as f:
        input_data = json.load(f)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []    
    for idx, entry in enumerate(input_data):

    # 获取上下文文本内容,并存储在doc_tokens列表中
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]   
            doc_tokens = []                         
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)
                
    # 获取原始问题文本和对应的id
            for qa in paragraph["qas"]:             
                qas_id = qa["id"]                  
                question_text = qa["question"]      
                start_position = None
                end_position = None
                orig_answer_text = None

                # 将上下文文本和原始问题文本等保存在SquadExample列表中
                example = SquadExample(qas_id=qas_id,
                                       question_text=question_text,
                                       doc_tokens=doc_tokens,
                                       orig_answer_text=orig_answer_text,
                                       start_position=start_position,
                                       end_position=end_position)
                examples.append(example)
    return examples

def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
                      output_nbest_file):
    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", [
            "feature_index", "start_index", "end_index", "start_logit",
            "end_logit"
        ])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]
        prelim_predictions = []
        for (feature_index, feature) in enumerate(features):

            # 取前n_best_size个预测概率值
            if not feature.unique_id in unique_id_to_result:
                print("feature not in unique_Id", feature.unique_id)
                continue
            result = unique_id_to_result[feature.unique_id]
            start_indexes = get_best_indexes(result.start_logits, n_best_size)   
            end_indexes = get_best_indexes(result.end_logits, n_best_size)       

            # 筛选与过滤,过滤掉不符合的开始索引和结束索引
            for start_index in start_indexes:
                for end_index in end_indexes:
                    if start_index >= len(feature.tokens):                      
                        continue
                    if end_index >= len(feature.tokens):                        
                        continue
                    if start_index not in feature.token_to_orig_map:            
                        continue
                    if end_index not in feature.token_to_orig_map:             
                        continue
                    if not feature.token_is_max_context.get(               
                            start_index, False):
                        continue
                    if end_index < start_index:                            
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:                     
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,                        
                            start_index=start_index,                           
                            end_index=end_index,                              
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))
                    
              # 排序,开始索引加结束索引的概率值和最大的排在前面      
        prelim_predictions = sorted(prelim_predictions,
                                    key=lambda x:
                                    (x.start_logit + x.end_logit),
                                    reverse=True)
        _NbestPrediction = collections.namedtuple(
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:

            # 取前n_best_size个概率值最大的结果
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] 
            orig_doc_start = feature.token_to_orig_map[pred.start_index]       
            orig_doc_end = feature.token_to_orig_map[pred.end_index]          
            orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] 
            tok_text = " ".join(tok_tokens)

            # 去标记化已分离的单词以及去除首尾空格
            tok_text = tok_text.replace(" ##", "")
            tok_text = tok_text.replace("##", "")
            tok_text = tok_text.strip()
            tok_text = " ".join(tok_text.split())
            orig_text = " ".join(orig_tokens)

            nbest.append(
                _NbestPrediction(text=orig_text,
                                 start_logit=pred.start_logit,
                                 end_logit=pred.end_logit))

        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
        assert len(nbest) >= 1
        total_scores = []
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
        probs = compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text                                            # 获取对应的文本
            output["probability"] = probs[i]                                       # 预测概率值
            output["start_logit"] = float(entry.start_logit)                       # 开始位置的概率值
            output["end_logit"] = float(entry.end_logit)                           # 结束位置的概率值
            nbest_json.append(output)

        all_predictions[example.qas_id] = nbest_json[0]["text"]                    # 取最大概率值,作为最终的预测答案
        all_nbest_json[example.qas_id] = nbest_json

    with open(output_prediction_file, "w") as writer:
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

    with open(output_nbest_file, "w") as writer:
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

# 对logits的概率值排序,并获取前个n_best_size的概率值
def get_best_indexes(logits, n_best_size):
    index_and_score = sorted(enumerate(logits),
                             key=lambda x: x[1],
                             reverse=True)
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes

# 计算softmax
def compute_softmax(scores):
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs